Rješenja svih zadataka s kompletnim postupkom i uputama

1. Koristimo pravila: $a \cdot a=a^{2}, a \cdot a \cdot a=a^{3}, \underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n-\text { puta }}=a^{n}$

Uputa: Prebrojite koliko se puta ponavlja isti faktor i taj broj stavite u eksponent:

1) $\underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{\substack{\text { 2-se ponavja pet } \\ \text { puta ap a u eksponent } \\ \text { pisemo } 5}}=2^{5} \quad \rightarrow$ čitamo: dva na petu
2) $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{5}$
3) $x \cdot x \cdot x=x^{3}$
4) $x \cdot y \cdot x \cdot y \cdot x \cdot z \cdot x \cdot y \cdot x \cdot x \cdot z=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y \cdot z \cdot z=x^{6} \cdot y^{3} \cdot z^{2}=x^{6} y^{3} z^{2}$ grupiramo iste faktore...
5) $(x y) \cdot(x y) \cdot(x y)=(x y)^{3}$
6) $(x+y) \cdot(x+y) \cdot(x+y) \cdot(x+y)=(x+y)^{4}$
7) $\left(\frac{x}{y}\right) \cdot\left(\frac{x}{y}\right) \cdot\left(\frac{x}{y}\right) \cdot\left(\frac{x}{y}\right)=\left(\frac{x}{y}\right)^{4}$
8) $(x-y) \cdot(x+y) \cdot(x-y) \cdot(x-y) \cdot(x+y)=$

$$
=(x-y) \cdot(x-y) \cdot(x-y) \cdot(x+y) \cdot(x+y)=(x-y)^{3} \cdot(x+y)^{2}
$$

8) $\left(\frac{a-b}{c}\right) \cdot\left(\frac{a-b}{c}\right) \cdot\left(\frac{a-b}{c}\right)=\left(\frac{a-b}{c}\right)^{3}$
2. Koristimo pravila: $a^{2}=a \cdot a, a^{3}=a \cdot a \cdot a, a^{n}=\underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n-\text { puta }}$
1) $5^{2}=5 \cdot 5=25$
2) $2^{3}=2 \cdot 2 \cdot 2=8$
3) $3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81$
4) $(-1)^{2}=(-1) \cdot(-1)=1$
5) $(-1)^{3}=(-1) \cdot(-1) \cdot(-1)=-1$
6) $(-1)^{4}=(-1) \cdot(-1) \cdot(-1) \cdot(-1)=1$ Zaključak: $\begin{aligned} & (-1)^{\text {na parni eksponent }}=1 \\ & (-1)^{\text {na neparrie eksponent }}=-1\end{aligned}$
7) $(-2)^{3}=\underbrace{(-2) \cdot(-2) \cdot(-2)}_{\downarrow}=-8$

Imamo neparan broj "minusa" pa će i umnožak biti negativno tj. imati će predznak minus
8) $(-x)^{4}=\underbrace{(-x) \cdot(-x) \cdot(-x) \cdot(-x)}_{\begin{array}{c}\text { Imamo paran broj "minusa" pa } \\ \text { je produkt pozitivan broj }\end{array}}=x^{4}$
2. Koristimo pravila: $\quad a^{2}=a \cdot a, a^{3}=a \cdot a \cdot a, a^{n}=\underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n-\text { puta }}$
9) $\left(\frac{1}{3}\right)^{2}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}$
10) $\left(\frac{3}{5}\right)^{3}=\frac{3}{5} \cdot \frac{3}{5} \cdot \frac{3}{5}=\frac{27}{125}$
11) $\left(\frac{2}{3}\right)^{5}=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{32}{243}$
12) $\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right)=\frac{2 \cdot 2}{3 \cdot 3}=\frac{4}{9}$
13) $\left(-\frac{2}{3}\right)^{3}=\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right) \cdot\left(-\frac{2}{3}\right)=-\frac{2 \cdot 2 \cdot 2}{3 \cdot 3 \cdot 3}=-\frac{8}{27}$
14) $\left(\frac{3}{4}\right)^{4}=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{81}{256}$
15) $\left(-\frac{4}{5}\right)^{2}=\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right)=+\frac{4 \cdot 4}{5 \cdot 5}=\frac{16}{25}$
16) $\left(-\frac{4}{5}\right)^{3}=\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right)=-\frac{4 \cdot 4 \cdot 4}{5 \cdot 5 \cdot 5}=-\frac{64}{125}$
17) $\left(-\frac{4}{5}\right)^{4}=\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right) \cdot\left(-\frac{4}{5}\right)=+\frac{4 \cdot 4 \cdot 4 \cdot 4}{5 \cdot 5 \cdot 5 \cdot 5}=\frac{256}{625}$
18) $0,2^{2}=0,2 \cdot 0,2=0,04$
19) $(-0,2)^{2}=(-0,2) \cdot(-0,2)=+0,2 \cdot 0,2=0,04$
20) $0,2^{3}=0,2 \cdot 0,2 \cdot 0,2=0,04 \cdot 0,2=0,008$
21) $(-0,2)^{3}=(-0,2) \cdot(-0,2) \cdot(-0,2)=-(0,2 \cdot 0,2 \cdot 0,2)=-0,008$
22) $(-2,5)^{2}=(-2,5) \cdot(-2,5)=+(2,5 \cdot 2,5)=6,25$
2. Koristimo pravila: $a^{2}=a \cdot a, a^{3}=a \cdot a \cdot a, a^{n}=\underbrace{a \cdot a \cdot a \cdot \ldots \cdot a}_{n-\text { puta }}$
23) $(-2,5)^{3}=(-2,5) \cdot(-2,5) \cdot(-2,5)=-(2,5 \cdot 2,5 \cdot 2,5)=15,625$
24) $(-2,5)^{4}=(-2,5) \cdot(-2,5) \cdot(-2,5) \cdot(-2,5)=+(2,5 \cdot 2,5 \cdot 2,5 \cdot 2,5)=39,0625$
25) $(-1)^{2}+(-1)^{3}+(-1)^{4}+(-1)^{5}=\underbrace{+1 \cdot(-1) \cdot(+1) \cdot(-1)}_{\begin{array}{c}\text { Prebrojimo minuse - -ma } \\ \text { inparan } \\ \text { biti paro pozitivi pane brou }\end{array}}=+1=1$
26) $(-1)^{20}+(-1)^{30}+(-1)^{45}=+1 \cdot(+1) \cdot(-1)=-1$
27) $(-2)^{1}+(-2)^{2}+(-2)^{3}+(-2)^{4}=-2+4-8+16=4+16-2-8=10$
28) $2^{5}-3^{2}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2-3 \cdot 3=32-9=23$
29) $3^{4}-2^{5}=3 \cdot 3 \cdot 3 \cdot 3-2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=81-32=49$
30) $(-2)^{3}+(-2)^{5}=(-2) \cdot(-2) \cdot(-2)+(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2)-8-32=-40$
31) $\left(\frac{1}{4}\right)^{2}+\left(-\frac{1}{2}\right)^{3}=\frac{1}{4} \cdot \frac{1}{4}+\left(-\frac{1}{2}\right) \cdot\left(-\frac{1}{2}\right) \cdot\left(-\frac{1}{2}\right)=\frac{1}{16}-\frac{1}{8}=\frac{1-2}{16}=-\frac{1}{16}$
32) $\left[(-0,2)^{2}+(-0,2)^{3}\right]^{2}=[(-0,2) \cdot(-0,2)+(-0,2) \cdot(-0,2) \cdot(-0,2)]^{2}=$

$$
=(0,04-0,008)^{2}=0,032^{2}=0,001024
$$

3. Koristimo pravila: | $c \cdot a+d \cdot a=(c+d) \cdot a$ | $c \cdot a-d \cdot a=(c-d) \cdot a$ |
| :---: | :---: |
| $c \cdot a^{n}+d \cdot a^{n}=(c+d) \cdot a^{n}$ | $c \cdot a^{n}-d \cdot a^{n}=(c-d) \cdot a^{n}$ | $\left.\begin{array}{c}5 \cdot x \\ \text { ili } \\ 5 x\end{array}\right\}$ je potpuno isti izraz...
2) $x+2 x+4 x=(1+2+4) \cdot x=7 x$
ili taj isti zadatak na malo duži ali sigurniji naćin:

$$
x+2 x+4 x=1 x+2 x+4 x=(1+2+4) \cdot x=7 x \quad \text { Dakle: } x=1 x
$$

Praksa je pokazala da velika većina đaka radi istu grešku: uzimate da je: $x=0 x$ što nije točno!! dakle vi kada računate u glavi grešite na ovaj način:

$$
x+2 x+4 x=6 x \text { ili } x+2 x+4 x=(0+2+4) \cdot x=6 x \text { što nije točno!!! }
$$

Jednom zauvjek treba zapamtiti $x=1 x$ pa to u zadatku treba izgledati ovako:

$$
x+2 x+4 x=1 x+2 x+4 x=(1+2+4) \cdot x=7 x
$$

3) $7 a-2 a=(7-2) \cdot a=5 \cdot a=5 a$
4) $9 y-2 y+3 y-y=(9-2+3-1) \cdot y=9 \cdot y=9 y$
ili taj isti zadatak na malo duži ali sigurniji naćin:
$9 y-2 y+3 y-y=9 y-2 y+3 y-1 y=(9-2+3-1) \cdot y=9 y$
5) $2 x+3 a-x+5 a+7 x-2 a=$

$$
=2 x-x+7 x+3 a+5 a-2 a=(2-1+7) \cdot x+(3+5-2) \cdot a=8 \cdot x+6 \cdot a=8 x+6 a
$$

6) $2 x y+3 x y+x y=(2+3+1) \cdot x y=6 x y$
7) $2 a b-4 a b+a b=(2-4+1) \cdot a b=-1 \cdot a b=-a b$
8) $4 x y^{2}+2 x y^{2}-9 x y^{2}=(4+2-9) \cdot x y^{2}=-3 \cdot x y^{2}=-3 x y^{2}$
9) $y+3 x^{2} y-4 z-5 x^{2} y-2 y+8 z-3 y+8 x^{2} y=$

$$
\left.\begin{array}{l}
=y-2 y-3 y+8 z-4 z+3 x^{2} y-5 x^{2} y+8 x^{2} y= \\
=(1-2-3) \cdot y+(8-4) \cdot z+(3-5+8) \cdot x^{2} y= \\
=-4 \cdot y+4 \cdot z+6 \cdot x^{2} y= \\
=-4 y+4 z+6 x^{2} y
\end{array}\right\} \text { Ovo je potpuno isti izraz }
$$

3. Koristimo pravila:

$c \cdot a+d \cdot a=(c+d) \cdot a$	$c \cdot a-d \cdot a=(c-d) \cdot a$
$c \cdot a^{n}+d \cdot a^{n}=(c+d) \cdot a^{n}$	$c \cdot a^{n}-d \cdot a^{n}=(c-d) \cdot a^{n}$

10) $7 x y^{3}-2 x y^{3}+4 x y^{3}=(7-2+4) \cdot x y^{3}=9 \cdot x y^{3}=9 x y^{3}$
11) $2\left(x^{2}-y\right)-3\left(x^{2}+y\right)=(2-3) \cdot\left(x^{2}+y\right)=-1 \cdot\left(x^{2}+y\right)=-x^{2}-y$
12) $3(x+y)+4(x+y)-(x+y)=(3+4-1) \cdot(x+y)=6(x+y)$
ili taj isti zadatak na malo duži ali sigurniji naćin:

$$
\begin{aligned}
3(x+y)+4(x+y)-(x+y) & =3(x+y)+4(x+y)-1(x+y)= \\
= & (3+4-1) \cdot(x+y)= \\
& =6(x+y)
\end{aligned}
$$

13) $5 x^{2} y^{3}+2 z-2 x^{2} y^{3}+7 z+3 x^{2} y^{3}-3 z=$

$$
\begin{aligned}
& =5 x^{2} y^{3}-2 x^{2} y^{3}+3 x^{2} y^{3}+2 z+7 z= \\
& =(5-2+3) \cdot x^{2} y^{3}+(2+7) \cdot z= \\
& =6 \cdot x^{2} y^{3}+9 \cdot z= \\
& =6 x^{2} y^{3}+9 z
\end{aligned}
$$

14) $3\left(x^{2}-3 x+5\right)-4\left(x^{2}-5 x+1\right)=$

$$
\begin{aligned}
& =(3-4) \cdot\left(x^{2}-3 x+5\right)= \\
& =-1 \cdot\left(x^{2}-3 x+5\right)= \\
& =-x^{2}+3 x-5
\end{aligned}
$$

15) $3(x+y-1)-6(x+y-1)+(x+y-1)=(3-6+1) \cdot(x+y-1)=-2(x+y-1)$
ili taj isti zadatak na malo duži ali sigurniji naćin:

$$
\begin{aligned}
3(x+y-1)-6(x+y-1)+(x+y-1) & =3(x+y-1)-6(x+y-1)+1(x+y-1)= \\
& =(3-6+1) \cdot(x+y-1)= \\
& =-2(x+y-1)
\end{aligned}
$$

4. Koristimo pravila: $a^{n} \cdot a^{m}=a^{n+m} \quad a^{n}: a^{m}=a^{n-m} \quad \frac{a^{n}}{a^{m}}=a^{n}: a^{m}=a^{n-m}$
1) $2^{5} \cdot 2^{3}=2^{5+3}=2^{8}$
2) $5^{2} \cdot 5^{7}=5^{2+7}=5^{9}$
3) $3^{x} \cdot 3^{2 x}=3^{x+2 x}=3^{3 x}$
4) $7^{2 m-5} \cdot 7^{m-2}=7^{2 m-5+m-2}=7^{2 m+m-5-2}=7^{3 m-7}$
5) $2^{2} \cdot 2^{6} \cdot 2^{4} \cdot 2^{8}=2^{2+6+4+8}=2^{20}$
6) $3 \cdot a^{4} \cdot 2 \cdot a^{7}=3 \cdot 2 \cdot a^{4} \cdot a^{7}=6 \cdot a^{4+7}=6 a^{11}$
7) $x^{2} \cdot x^{3}=x^{2+3}=x^{5}$
8) $x \cdot x^{3} \cdot x^{5}=x^{1} \cdot x^{3} \cdot x^{5}=x^{1+3+5}=x^{9}$

$$
\text { Pazi } x=x^{1}
$$

9) $x^{2} \cdot x^{4} \cdot x^{6}=x^{2+4+6}=x^{12}$
10) $x^{\frac{2}{3}} \cdot x^{2} \cdot x^{\frac{5}{2}}=x^{\frac{2}{3}+2+\frac{5}{2}}=x^{\frac{2 \cdot 2+2 \cdot 6+5 \cdot 3}{6}}=x^{\frac{4+12+15}{6}}=x^{\frac{31}{6}}$
11) $x^{2} \cdot x^{2+a} \cdot x^{a-2} \cdot x^{3}=x^{2+2+a+a-2+3}=x^{a+a+2+2-2+3}=x^{2 a+5}$
12) $a^{3} \cdot a^{6}=a^{3+6}=a^{9}$
13) $a^{4} \cdot a^{2} \cdot a=a^{4} \cdot a^{2} \cdot a^{1}=a^{4+2+1}=a^{7} \quad$ Pazi $a=a^{1}$

Dosta često radite ovakve greške:
$\left.\begin{array}{l}a^{4} \cdot a^{2} \cdot a=a^{4+2}=a^{6} \\ a^{4} \cdot a^{2} \cdot a=a^{4+2+0}=a^{6}\end{array}\right\}$ što nije točno jer je: $a=a^{1}$
14) $a^{2} \cdot a^{5} \cdot a^{7} \cdot a^{3}=a^{2+5+7+3}=a^{17}$
15) $a^{3 x} \cdot a^{x+2} \cdot a^{2 x}=a^{3 x+x+2+2 x}=a^{6 x+2}$
16) $\quad a^{x+y} \cdot a^{2 x} \cdot a^{x+3 y}=a^{x+y+2 x+x+3 y}=a^{x+2 x+x+y+3 y}=a^{4 x+4 y}$
17) $-2 \cdot x \cdot 6 \cdot x^{3} \cdot 3 \cdot x^{4}=-2 \cdot 6 \cdot 3 \cdot x^{1} \cdot x^{3} \cdot x^{4}=-36 \cdot x^{1+3+4}=-36 x^{8}$
4. Koristimo pravila: $\quad a^{n} \cdot a^{m}=a^{n+m} \quad a^{n}: a^{m}=a^{n-m} \quad \frac{a^{n}}{a^{m}}=a^{n}: a^{m}=a^{n-m}$
18) $2 \cdot x^{2} \cdot x^{5}+3 \cdot x^{2} \cdot y^{3} \cdot x \cdot y-4 \cdot x \cdot x^{6}+2 \cdot x^{3} \cdot y^{2} \cdot y^{2}=$

$$
\begin{aligned}
& =2 \cdot x^{2+5}+3 \cdot x^{2} \cdot x^{1} \cdot y^{3} \cdot y^{1}-4 \cdot x^{1} \cdot x^{6}+2 \cdot x^{3} \cdot y^{2+2}= \\
& =2 \cdot x^{7}+3 \cdot x^{2+1} \cdot y^{3+1}-4 \cdot x^{1+6}+2 \cdot x^{3} \cdot y^{4}= \\
& =2 \cdot x^{7}-4 \cdot x^{7}+3 \cdot x^{3} \cdot y^{4}+2 \cdot x^{3} \cdot y^{4}= \\
& =(2-4) \cdot x^{7}+(3+2) \cdot x^{3} \cdot y^{4}= \\
& =-2 \cdot x^{7}+5 \cdot x^{3} \cdot y^{4}= \\
& \left.=-2 x^{7}+5 x^{3} y^{4} \quad\right\} \quad \text { To je potpuno isti izraz... uobičajeni zapis je ovaj zadnji... }
\end{aligned}
$$

19) $\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{2+3+4}=\left(\frac{1}{2}\right)^{9}$
20) $x^{2 m+1} \cdot x^{3 m+2}=x^{2 m+1+3 m+2}=x^{2 m+3 m+1+2}=x^{5 m+3}$
21) $x^{2 m-4} \cdot x^{3 m+2}=x^{2 m-4+3 m+2}=x^{2 m+3 m+2-4}=x^{5 m-2}$
22) $x^{\frac{3}{2} m+1} \cdot x^{2 m-7}=x^{\frac{3}{2} m+1+2 m-7}=x^{\frac{3}{2} m+2 m+1+8}=x^{\left(\frac{3}{2}+2\right) \cdot m+9}=x^{\frac{3+2 \cdot 2}{2} \cdot m+9}=x^{\frac{7}{2} m+9}$
23) $x^{m+n} \cdot x^{2 m-n} \cdot x^{3 m+2 n}=x^{m+n+2 m-n+3 m+2 n}=x^{m+2 m+3 m+n-n+2 n}=x^{6 m+2 n}$
24) $x^{2 m-n} \cdot x^{3 m-n} \cdot x^{2 m-2 n}=x^{2 m-n+3 m-n+2 m-2 n}=x^{2 m+3 m+2 m-n-n-2 n}=x^{7 m-4 n}$
25) $a^{2 m+3 n} \cdot a^{3 m-5 n}=a^{2 m+3 n+3 m-5 n}=a^{2 m+3 m+3 n-5 n}=a^{5 m-2 n}$
26) $2 a^{m-3 n+1} \cdot 3 a^{4 m+n-7}=2 \cdot 3 \cdot a^{m-3 n+1+4 m+n-7}=6 \cdot a^{m+4 m+n-3 n+1-7}=6 \cdot a^{5 m-2 n-6}=6 a^{5 m-2 n-6}$
27) $2 a^{x+y} \cdot 5 a^{2 x+y}=2 \cdot 5 \cdot a^{x+y+2 x+y}=10 \cdot a^{x+2 x+y+y}=10 a^{3 x+2 y}$
28) $\frac{2}{3} a^{3 m+2 n} \cdot \frac{9}{4} a^{2 m-4 n}=\frac{2}{3} \cdot \frac{9}{4} \cdot a^{3 m+2 n} \cdot a^{2 m-4 n}=\frac{2}{3} \cdot \frac{3 \cdot 3}{2 \cdot 2} \cdot a^{3 m+2 n+2 m-4 n}=\frac{3}{2} \cdot a^{3 m+2 m+2 n-4 n}=\frac{3}{2} a^{5 m-2 n}$
29) $(x-y)^{2} \cdot(x-y)=(x-y)^{2} \cdot(x-y)^{1}=(x-y)^{2+1}=(x-y)^{3}$
30) $(x+y)^{3} \cdot(x+y)^{4}=(x+y)^{3+4}=(x+y)^{7}$
4. Koristimo pravila: $a^{n} \cdot a^{m}=a^{n+m} \quad a^{n}: a^{m}=a^{n-m} \quad \frac{a^{n}}{a^{m}}=a^{n}: a^{m}=a^{n-m}$
31) $(x+y-1)^{m+1} \cdot(x+y-1)^{2 m+2} \cdot(x+y-1)^{3 m-4}=(x+y-1)^{m+1+2 m+2+3 m-4}=$

$$
=(x+y-1)^{m+2 m+3 m+1+2-4}=(x+y-1)^{6 m-1}
$$

32) $\left(x^{2 m}-y^{n}\right) \cdot\left(x^{m}+y^{2 n}\right)=\left(x^{m}+y^{2 n}\right)^{1} \cdot\left(x^{m}+y^{2 n}\right)^{1}=\left(x^{m}+y^{2 n}\right)^{1+1}=\left(x^{m}+y^{2 n}\right)^{2}$
33) $(x+y)^{2} \cdot(x-y)^{3} \cdot(x+y)^{2 m-1} \cdot(x-y)^{m-3}=(x+y)^{2} \cdot(x+y)^{2 m-1} \cdot(x-y)^{3} \cdot(x-y)^{m-3}=$

$$
\begin{aligned}
& =(x+y)^{2+2 m-1} \cdot(x-y)^{3+m-3}= \\
& =(x+y)^{2 m+2-1} \cdot(x-y)^{m+3-3}= \\
& =(x+y)^{2 m+1} \cdot(x-y)^{m}
\end{aligned}
$$

34) $\left(\frac{a b^{2}}{c}\right)^{3 x-2 y} \cdot\left(\frac{a b^{2}}{c}\right)^{4 x-y} \cdot\left(\frac{a b^{2}}{c}\right)^{x-y} \cdot\left(\frac{a b^{2}}{c}\right)^{3 y-2 x}=\left(\frac{a b^{2}}{c}\right)^{3 x-2 y+4 x-y+x-y+3 y-2 x}=$

$$
\begin{aligned}
& =\left(\frac{a b^{2}}{c}\right)^{3 x+4 x+x-2 x-2 y-y-y+3 y}= \\
& =\left(\frac{a b^{2}}{c}\right)^{6 x-y}
\end{aligned}
$$

35) $9 x^{4} y^{2} \cdot \frac{1}{3} x^{2} y=9 \cdot \frac{1}{3} \cdot x^{4} \cdot x^{2} \cdot y^{2} \cdot y^{1}=3 \cdot 3 \cdot \frac{1}{3} \cdot x^{4+2} \cdot y^{2+1}=3 \cdot x^{6} \cdot y^{3}=3 x^{6} y^{3}$
36) $25 x^{6} y^{4} \cdot \frac{y x^{5}}{5}=5 \cdot 5 \cdot \frac{1}{5} \cdot x^{6} \cdot y^{4} \cdot y \cdot x^{5}=5 \cdot x^{6+5} \cdot y^{4+1}=5 x^{11} y^{5}$
37) $2 x^{2} y^{3} z^{4} \cdot\left(-3 x^{3} y^{4} z^{2}\right)=2 \cdot(-3) \cdot x^{2} \cdot x^{3} \cdot y^{3} \cdot y^{4} \cdot z^{4} \cdot z^{2}=-6 \cdot x^{2+3} \cdot y^{3+4} \cdot z^{4+2}=-6 x^{5} y^{7} z^{6}$
38) $x^{2} \cdot\left(x^{4}-x^{3}-3 x^{2}+2 x-7\right)=x^{2} \cdot x^{4}-x^{2} \cdot x^{3}+x^{2} \cdot\left(-3 \cdot x^{2}\right)+x^{2} \cdot 2 \cdot x+x^{2} \cdot(-7)=$

$$
\begin{aligned}
& =x^{2+4}-x^{2+3}-3 \cdot x^{2+2}+2 \cdot x^{2+1}-7 \cdot x^{2}= \\
& =x^{6}-x^{5}-3 x^{4}+2 x^{3}-7 x^{2}
\end{aligned}
$$

39) $\left(-2 x y^{2}\right) \cdot\left(x^{2} y-\frac{1}{2} x y^{3}+x^{3} y\right)=-2 x y^{2} \cdot x^{2} y+\left(-2 x y^{2}\right) \cdot\left(-\frac{1}{2} x y^{3}\right)-2 x y^{2} \cdot x^{3} y=$

$$
\begin{aligned}
& =-2 \cdot x^{1} \cdot x^{2} \cdot y^{2} \cdot y^{1}+2 \cdot \frac{1}{2} \cdot x^{1} \cdot x^{1} \cdot y^{2} \cdot y^{3}-2 \cdot x^{1} \cdot x^{3} \cdot y^{2} \cdot y^{1}= \\
& =-2 \cdot x^{1+2} \cdot y^{2+1}+x^{1+1} \cdot y^{2+3}-2 \cdot x^{1+3} \cdot y^{2+1}= \\
& =-2 x^{3} y^{3}+x^{2} y^{5}-2 x^{4} y^{3}
\end{aligned}
$$

4. U slijedećim zadacima koristimo pravilo: $a^{n}: a^{m}=a^{n-m}$
40) $2^{9}: 2^{5}=2^{9-5}=2^{4}=2^{4}=2 \cdot 2 \cdot 2 \cdot 2=16$
41) $13^{7}: 13^{5}=13^{7-5}=13^{2}=169$
42) $3^{5 x}: 3^{3 x}=3^{5 x-3 x}=3^{2 x}$
43) $5^{3 m-2}: 5^{m-2}=5^{3 m-2-(m-2)}=5^{3 m-2-m+2}=5^{3 m-m+2-2}=5^{2 m}$

$$
\downarrow
$$

Pazi: drugi eksponent se mora staviti u zagradu...vrlo često radite ovakvu grešku:

$$
5^{3 m-2}: 5^{m-2}=5^{3 m-2-m-2}=5^{3 m-m-2-2}=5^{2 m-4} \rightarrow \text { što nije točno! }
$$

\downarrow
Ovdje je pogreška u predznaku kod zadnjeg člana, jer prvom promjenite predznak, a drugom ne, to se događa zbog toga što radite napamet... tj. preskaćete korake...

Preporuka: čim imamo višečlane eksponente koristite zagrade i ne preskačite korake...
44) $x^{4}: x^{2}=x^{4-2}=x^{2}$
45) $x^{6}: x^{2}=x^{6-2}=x^{4}$
46) $x^{7}: x^{2}: x^{3}=x^{7-2-3}=x^{2}$
47) $x^{7} \cdot x^{3}: x^{4}=x^{7+3-4}=x^{6}$
48) $x: x^{2}=x^{1}: x^{2}=x^{1-2}=x^{-1}=\frac{1}{x}$
49) $x^{2}: x^{\frac{1}{2}}=x^{2-\frac{1}{2}}=x^{\frac{2 \cdot 2-1}{2}}=x^{\frac{4-1}{2}}=x^{\frac{3}{2}}$
50) $x^{\frac{7}{9}}: x^{\frac{1}{3}}=x^{\frac{7}{9}-\frac{1}{3}}=x^{\frac{7-1 \cdot 3}{9}}=x^{\frac{7-3}{9}}=x^{\frac{4}{9}}$
51) $x^{\frac{2}{5}}: x^{2}: x^{\frac{1}{2}}=x^{\frac{2}{5}-2-\frac{1}{2}}=x^{\frac{2 \cdot 2-2 \cdot 10-1 \cdot 5}{10}}=x^{\frac{4-20-5}{10}}=x^{-\frac{21}{10}}$
52) $a^{4 x}: a^{2 x}=a^{4 x-2 x}=a^{2 x}$
53) $a^{8}: a^{3}: a^{2}=a^{8-3-2}=a^{3}$
54) $a: a^{2}: a^{3}=a^{1}: a^{2}: a^{3}=a^{1-2-3}=a^{-4} \quad$ ili $=\frac{1}{a^{4}}$
55) $a^{7}: a^{2} \cdot a^{3}=a^{7-2+3}=a^{8}$

U slijedećim zadacima koristimo pravilo: $\frac{a^{n}}{a^{m}}=a^{n}: a^{m}=a^{n-m}$
56) $\frac{x^{5}}{x^{2}}=x^{5}: x^{2}=x^{5-2}=x^{3}$
57) $\frac{x^{8}}{x^{3}}=x^{8}: x^{3}=x^{8-3}=x^{5}$
58) $\frac{x^{\frac{3}{2}}}{x}=x^{\frac{3}{2}}: x^{1}=x^{\frac{3}{2}-1}=x^{\frac{3-2}{2}}=x^{\frac{1}{2}}$
59) $\frac{x^{\frac{7}{4}}}{x^{\frac{1}{3}}}=x^{\frac{7}{4}}: x^{\frac{1}{3}}=x^{\frac{7}{4}-\frac{1}{3}}=x^{\frac{7 \cdot 3-1 \cdot 4}{12}}=x^{\frac{21-4}{12}}=x^{\frac{17}{12}}$
4. U slijedećim zadacima koristimo pravilo: $\frac{a^{n}}{a^{m}}=a^{n}: a^{m}=a^{n-m}$
60) $\frac{x^{m+1}}{x^{2 m+2}}=x^{m+1}: x^{2 m+2}=x^{m+1-(2 m+2)}=x^{m+1-2 m-2}=x^{m-2 m+1-2}=x^{-m-1}$
61) $\frac{x^{3 m+7}}{x^{3 m+5}}=x^{3 m+7}: x^{3 m+5}=x^{3 m+7-(3 m+5)}=x^{3 m+7-3 m-5}=x^{3 m-3 m+7-5}=x^{2}$
62) $\frac{x^{8 m+7}}{x^{3 m+2}}: x^{m-1}=x^{8 m+7}: x^{3 m+2}: x^{m-1}=x^{8 m+7-(3 m+2)-(m-1)}=x^{8 m+7-3 m-2-m+1}=x^{8 m-3 m-m+7-2+1}=x^{4 m+6}$
63) $\frac{a^{9 m+11}}{a^{2 m-3}}: a^{7 m+10}=a^{9 m+11}: a^{2 m-3}: a^{7 m+10}=a^{9 m+11-(2 m-3)-(7 m+10)}=a^{9 m+11-2 m+3-7 m-10}=$

$$
=a^{9 m-2 m-7 m+11+3-10}=a^{4}
$$

64) $(x-y)^{7}:(x-y)^{4}=(x-y)^{7-4}=(x-y)^{3}$
65) $(2 x-3 y)^{2 x+3 y}:(2 x-3 y)^{2 x+3 y}=(2 x-3 y)^{2 x+3 y-(2 x+3 y)}=(2 x-3 y)^{2 x+3 y-2 x-3 y}=(2 x-3 y)^{0}=1$
66) $\left(\frac{a^{2} b}{c^{3}}\right)^{6}:\left(\frac{a^{2} b}{c^{3}}\right)^{4}=\left(\frac{a^{2} b}{c^{3}}\right)^{6-4}=\left(\frac{a^{2} b}{c^{3}}\right)^{2}$
67) $(2 x+y)^{2 m-4} \cdot(2 x+y)^{4 m-2}:(2 x+y)^{m-4}=(2 x+y)^{2 m-4+4 m-2-(m-4)}=(2 x+y)^{2 m+4 m-4-2-m+4}=$

$$
=(2 x+y)^{2 m+4 m-m+4-4-2}=(2 x+y)^{5 m-2}
$$

68) $\left(\frac{a^{2} b}{c^{3}}\right)^{x-2} \cdot\left(\frac{a^{2} b}{c^{3}}\right)^{3 x-3}:\left(\frac{a^{2} b}{c^{3}}\right)^{4 x-4}=\left(\frac{a^{2} b}{c^{3}}\right)^{x-2+3 x-3-(4 x-4)}=\left(\frac{a^{2} b}{c^{3}}\right)^{x+3 x-2-3-4 x+4}=$

$$
=\left(\frac{a^{2} b}{c^{3}}\right)^{x+3 x-4 x+4-2-3}=\underbrace{\left(\frac{a^{2} b}{c^{3}}\right)^{-1} \quad \text { ili }=\left(\frac{c^{3}}{a^{2} b}\right)}_{\begin{array}{c}
\text { U ovom slučaju možete ostaviti i i jevo rješnje.... } \\
\text { jer jos̆ nismo obradili pravilo:"na minus prvu" }
\end{array}}
$$

Množimo svaki član prve zagrade sa svakim članom druge zagrade...
69) $\left(x^{2}-1\right) \cdot\left(x^{4}+x^{2}+1\right)=x^{2} \cdot x^{4}+x^{2} \cdot x^{2}+x^{2} \cdot 1-1 \cdot x^{4}-1 \cdot x^{2}-1 \cdot 1=$

$$
\begin{aligned}
& =x^{2+4}+x^{2+2}+x^{2}-x^{4}-x^{2}-1= \\
& =x^{6}+x^{4}+x^{2}-x^{4}-x^{2}-1= \\
& =x^{6}+x^{4}-x^{4}+x^{2}-x^{2}-1= \\
& =x^{6}-1
\end{aligned}
$$

70) $\left(x^{2}+1\right) \cdot\left(x-x^{2}+1\right)=x^{2} \cdot x^{1}+x^{2} \cdot\left(-x^{2}\right)+x^{2} \cdot 1+1 \cdot x+1 \cdot\left(-x^{2}\right)+1 \cdot 1=$

$$
\begin{aligned}
& =x^{2+1}-x^{2+2}+x^{2}+x-x^{2}+1= \\
& =x^{3}-x^{4}+x^{2}-x^{2}+x+1= \\
& =-x^{4}+x^{3}+x+1
\end{aligned}
$$

> 5. Koristimo pravila: | $(a b)^{n}=a^{n} b^{n}$ | $(a b c)^{n}=a^{n} b^{n} c^{n}$ | $\left(a^{n}\right)^{m}=a^{n \cdot m} \quad\left(\left(a^{n}\right)^{m}\right)^{z}=a^{n \cdot m \cdot z}$ |
| :--- | :--- | :--- |

Pojavio nam se jedan problem a taj je: $(-x)^{n} \quad$ vidi zadatke: 7),13),14), 15),16),17),18),19),23),24)...
Pogledajmo opet u 2. zadatak kako smo to tamo rješili:
2.4) $(-1)^{2}=(-1) \cdot(-1)=1$
5) $(-1)^{3}=(-1) \cdot(-1) \cdot(-1)=-1$

Zaključak: $\begin{aligned} & (-1)^{\text {na parni eksponent }}=1 \\ & (-1)^{\text {na neparni eksponent }}=-1\end{aligned}$
6) $(-1)^{4}=(-1) \cdot(-1) \cdot(-1) \cdot(-1)=1$
7) $(-2)^{3}=\underbrace{(-2) \cdot(-2) \cdot(-2)}_{\downarrow}=-8$

Imamo neparan broj "minusa" pa će i umnožak biti negativno tj. imati će predznak minus
8) $(-x)^{4}=\underbrace{(-x) \cdot(-x) \cdot(-x) \cdot(-x)}_{\begin{array}{c}\text { Imamo paran broj "minuaa" pa } \\ \text { je produkt pozitivan broj }\end{array}}=x^{4}$

53 je neparan broj pa je: $(-x)^{53}=-x^{53}$
dalje logički je pitanje koliko je $(-x)^{54}$? eksponent je 54 , 54 je paran broj pa je: $(-x)^{54}=x^{54}$ $(-x)^{55}=-x^{55} \quad$ jer je eksponent $=55$, a 55 je neparan broj
$(-x)^{56}=x^{56} \quad$ jer je eksponent $=56$, a 56 je paran broj

Zaključak:

$(-x)^{\text {na parni eksponent }}=x^{\text {parnu }}$	ili	$(-x)^{2 n}=x^{2 n}$
$(-x)^{\text {na neparni eksponent }}=-x^{\text {neparnu }}$		$(-x)^{2 n+1}=-x^{2 n+1}$

> | $2 n$ je oznaka za parni broj |
| :--- |
| $2 n+1$ je oznaka za neparan broj |

Sada to primjenimo u zadatcima:
2.8) $(-x)^{4}=x^{4} \quad$ zato što je eksponent $=4$, a 4 je paran broj
7) $(-2)^{3}=-2^{3}=-8 \quad$ zato što je eksponent $=3$, a 3 je neparan broj

Postoji i drugi način rješavanja ovakvih zadataka:
II način
7) $(-2)^{3}=(-1 \cdot 2)^{3}=(-1)^{3} \cdot 2^{3}=-1 \cdot 8=-8$

$$
\underbrace{(-2)^{3}=(-1 \cdot 2)^{3}}=(-1)^{3} \cdot 2^{3}=-1 \cdot 8=-8
$$

Svaki negativan broj $(-x)$
da se zapisati u obliku:
$(-x)=(-1 \cdot x)$
8) $(-x)^{4}=(-1 \cdot x)^{4}=(-1)^{4} \cdot x^{4}=1 \cdot x^{4}=x^{4}$ II način
5. Koristimo pravila: $\begin{array}{llll}(a b)^{n}=a^{n} b^{n} & (a b c)^{n}=a^{n} b^{n} c^{n} & \left(a^{n}\right)^{m}=a^{n \cdot m} \quad\left(\left(a^{n}\right)^{m}\right)^{z}=a^{n \cdot m \cdot z}\end{array}$
$(a b)^{n}=a^{n} b^{n} \quad$ Postupili smo prema prvom pravilu...

$$
\uparrow \quad \downarrow
$$

1) $(2 x)^{2}=2^{2} \cdot x^{2}=4 \cdot x^{2}=4 x^{2}$
2) $(3 x)^{2}=3^{2} \cdot x^{2}=9 \cdot x^{2}=9 x^{2}$
3) $\left(\frac{3}{4} x^{2} y^{3}\right)^{2}=\left(\frac{3}{4}\right)^{2} \cdot\left(x^{2}\right)^{2} \cdot\left(y^{3}\right)^{2}=\frac{3^{2}}{4^{2}} \cdot x^{2 \cdot 2} \cdot y^{3 \cdot 2}=\frac{9}{16} x^{4} y^{6}$
$(a b c)^{n}=a^{n} b^{n} c^{n} \quad\left(a^{n}\right)^{m}=a^{n \cdot m} \quad$ Postupili smo prema drugom i trécem pravilu...
4) $\left(\frac{2}{3} x y^{2}\right)^{3}=\left(\frac{2}{3}\right)^{3} \cdot x^{3} \cdot\left(y^{2}\right)^{3}=\frac{2^{3}}{3^{3}} \cdot x^{3} \cdot y^{2 \cdot 3}=\frac{8}{27} x^{3} y^{6}$
5) $\left(\frac{1}{2} x^{2} y^{3}\right)^{4}=\left(\frac{1}{2}\right)^{4} \cdot\left(x^{2}\right)^{4} \cdot\left(y^{3}\right)^{4}=\frac{1^{4}}{2^{4}} \cdot x^{2 \cdot 4} \cdot y^{3 \cdot 4}=\frac{1}{16} x^{8} y^{12}$
6) $\left(x^{2}\right)^{2}=x^{2 \cdot 2}=x^{4}$
7) $\left(-x^{2}\right)^{2}=\left(x^{2}\right)^{2}=x^{2 \cdot 2}=x^{4} \quad$ I način

II način:
7) $\left(-x^{2}\right)^{2}=\left(-1 \cdot x^{2}\right)^{2}=(-1)^{2} \cdot\left(x^{2}\right)^{2}=1 \cdot x^{2 \cdot 2}=x^{4}$
8) $\left(x^{2}\right)^{3}=x^{2 \cdot 3}=x^{6}$
9) $\left(x^{2}\right)^{5}=x^{2 \cdot 5}=x^{10}$
10) $\left(2 x^{3} y^{4}\right)^{2}=2^{2} \cdot\left(x^{3}\right)^{2} \cdot\left(y^{4}\right)^{2}=4 \cdot x^{3 \cdot 2} \cdot y^{4 \cdot 2}=4 x^{6} y^{8}$
11) $\left(2 x^{3} y^{4}\right)^{3}=2^{3} \cdot\left(x^{3}\right)^{3} \cdot\left(y^{4}\right)^{3}=8 \cdot x^{3 \cdot 3} \cdot y^{4 \cdot 3}=8 x^{9} y^{12}$
12) $\left(2 x^{3} y^{4}\right)^{4}=2^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{4}\right)^{4}=16 \cdot x^{3 \cdot 4} \cdot y^{4 \cdot 4}=16 x^{12} y^{16}$
13) $\left[(-y)^{2}\right]^{3}=\left(y^{2}\right)^{3}=y^{2 \cdot 3}=y^{6}$

II način:
13) $\left[(-y)^{2}\right]^{3}=\left[(-1 \cdot y)^{2}\right]^{3}=\left[(-1)^{2} \cdot y^{2}\right]^{3}=\left[1 \cdot y^{2}\right]^{3}=\left(y^{2}\right)^{3}=y^{2 \cdot 3}=y^{6}$
5.

Koristimo pravilo:

$$
\begin{aligned}
& (-x)^{\text {na parni eksponent }}=x^{\text {parnu }} \\
& (-x)^{\text {na neparni eksponent }}=-x^{\text {neparnu }}
\end{aligned}
$$

14), 15), 16), 17), 18), 19)...
14) $\left(-y^{2}\right)^{3}=-\left(y^{2}\right)^{3}=-y^{2 \cdot 3}=-y^{6} \quad$ to je bio I način rješavanja

II način

14) $\left(-y^{2}\right)^{3}=\left(-1 \cdot y^{2}\right)^{3}=(-1)^{3} \cdot\left(y^{2}\right)^{3}=-1 \cdot y^{2 \cdot 3}=-1 \cdot y^{6}=-y^{6}$

$$
\begin{aligned}
& \downarrow \\
& (-1)^{3}=-1 \text { Prema pravilu: }(-1)^{\text {neparnu }}=-1 \\
& (-1)^{2}=+1 \text { Prema pravilu: }(-1)^{\text {parnu }}=+1=1 \\
& \uparrow
\end{aligned}
$$

15) $\left(-y^{3}\right)^{2}=\left(-1 \cdot y^{3}\right)^{2}=(-1)^{2} \cdot\left(y^{3}\right)^{2}=1 \cdot y^{3 \cdot 2}=1 \cdot y^{6}=y^{6} \quad$ to je bio II način rješavanja
16) $\left(-y^{3}\right)^{2}=\left(y^{3}\right)^{2}=y^{3 \cdot 2}=y^{6} \quad$ to je bio I način rješavanja

$$
\left(-y^{3}\right)^{\text {parnu }}=\left(y^{3}\right)^{\text {parnu }}
$$

16) $-\left(-y^{4}\right)^{3}=-\left(-\left(y^{4}\right)^{3}\right)=-\left(-y^{4 \cdot 3}\right)=+y^{12}=y^{12} \quad$ to je bio I način rješavanja
17) $-\left(-y^{4}\right)^{3}=-\left(-1 \cdot y^{4}\right)^{3}=-\left[(-1)^{3} \cdot\left(y^{4}\right)^{3}\right]=-\left(-1 \cdot y^{4 \cdot 3}\right)=-\left(-y^{12}\right)=y^{12} \quad$ II način
18) $-\left(-x^{5}\right)^{2}=-\left(x^{5}\right)^{2}=-x^{5 \cdot 2}=-x^{10} \quad$ to je bio I način rješavanja
19) $-\left(-x^{5}\right)^{2}=-\left(-1 \cdot x^{5}\right)^{2}=-\left[(-1)^{2} \cdot\left(x^{5}\right)^{2}\right]=-\left(1 \cdot x^{5 \cdot 2}\right)=-\left(x^{10}\right)=-x^{10} \quad$ II način

U 18) pokazat ćemo tri načina rješavanja:
18) $\left[-\left(-x^{5}\right)\right]^{2}=\left[+\left(-x^{5}\right)\right]^{2}=\left(-x^{5}\right)^{2}=\left(x^{5}\right)^{2}=x^{5 \cdot 2}=x^{10} \quad$ to je bio I način rješavanja
18) $\left[-\left(-x^{5}\right)\right]^{2}=\left[-1 \cdot\left(-x^{5}\right)\right]^{2}=$

$$
=\left(-1^{2}\right) \cdot\left(-x^{5}\right)^{2}==1 \cdot\left(-1 \cdot x^{5}\right)^{2}=(-1)^{2} \cdot\left(x^{5}\right)^{2}=1 \cdot x^{5 \cdot 2}=x^{10} \quad \text { II način }
$$

18) $\left[-\left(-x^{5}\right)\right]^{2}=\left[+x^{5}\right]^{2}=\left(x^{5}\right)^{2}=x^{5.2}=x^{10} \quad$ III način \ldots u [] minus i minus daju plus

U ovom 18) zadatku najbrži ne III način rješavanja... dok je u 19) definitivno II način najbolji....
5.
19) $\left[-\left(-x^{5}\right)^{2}\right]^{2}=\left[+\left(-x^{5}\right)^{2}\right]^{2}=\left(-x^{5}\right)^{2 \cdot 2}=\left(-x^{5}\right)^{4}=\left(x^{5}\right)^{4}=x^{5 \cdot 4}=x^{20} \quad$ I način

I način u ovom zadatku pomalo zbunjuje pa je bolje to rješavati na II način izlučivanjem (-1) :
II način:
19) $\left[-\left(-x^{5}\right)^{2}\right]^{2}=\left[-\left((-1) \cdot x^{5}\right)^{2}\right]^{2}=\left[-\left((-1)^{2} \cdot\left(x^{5}\right)^{2}\right)\right]^{2}=$

$$
\begin{aligned}
& =\left[-\left(1 \cdot x^{5 \cdot 2}\right)\right]^{2}= \\
& =\left[-1 \cdot x^{10}\right]^{2}= \\
& =\left[(-1) \cdot x^{10}\right]^{2}=(-1)^{2} \cdot\left(x^{10}\right)^{2}=1 \cdot x^{10 \cdot 2}=x^{20}
\end{aligned}
$$

20) $-\left(x^{5}\right)^{2}=-\left(x^{5 \cdot 2}\right)=-\left(x^{10}\right)=-x^{10}$
21) $\left(2 a b^{2}\right)^{3}=2^{3} \cdot a^{3} \cdot\left(b^{2}\right)^{3}=8 \cdot a^{3} \cdot b^{2 \cdot 3}=4 a^{3} b^{6}$
22) $\left(a^{2} b^{3}\right)^{4}=\left(a^{2}\right)^{4} \cdot\left(b^{3}\right)^{4}=a^{2 \cdot 4} \cdot b^{3 \cdot 4}=a^{8} b^{12}$
23) $\left(-2 y^{3}\right)^{2}=(-2)^{2} \cdot\left(y^{3}\right)^{2}=4 \cdot y^{3 \cdot 2}=4 y^{6}$
\downarrow

$$
\begin{aligned}
& (-2)^{2}=4 \text { jer je: }(-2)^{2}=(-1 \cdot 2)^{2}=(-1)^{2} \cdot 2^{2}=1 \cdot 4=4 \\
& (-2)^{3}=-8 \text { jer je: }(-2)^{3}=(-1 \cdot 2)^{3}=(-1)^{3} \cdot 2^{3}=-1 \cdot 8=-8 \\
& (-2)^{4}=(-1 \cdot 2)^{4}=(-1)^{4} \cdot 2^{4}=1 \cdot 16=16 \quad \text { itd. }
\end{aligned}
$$

ili ovako: $\quad(-2)^{2}=(-2) \cdot(-2)=4$
$\begin{array}{ll} & (-2)^{3}=(-2) \cdot(-2) \cdot(-2)=-8 \\ \text { ili koristimo pravilo: } \quad \begin{array}{l}(-x)^{\text {na parni esponent }}=x^{\text {parnu }} \\ (-x)^{\text {na neparni eksponent }}=-x^{\text {neparnu }}\end{array} \\ & \text { pa je: } \begin{array}{l}(-2)^{2}=2^{2}=4 \\ (-2)^{3}=-2^{3}=-8\end{array}\end{array}$

$$
(-3)^{3}=-3^{3}=-27
$$

24) $\left(-3 y^{2}\right)^{3}=(-3)^{3} \cdot\left(y^{2}\right)^{3}=-3^{3} \cdot y^{2 \cdot 3}=-27 y^{6}$

$$
(-3)^{3}=(-1 \cdot 3)^{3}=(-1)^{3} \cdot 3^{3}=-1 \cdot 27=-27 \quad \text { ili }(-3)^{3}=(-3) \cdot(-3) \cdot(-3)=-27
$$

5.
25) $\left(-\frac{2}{3} x^{2}\right)^{2}=\left(\frac{2}{3} x^{2}\right)^{2}=\left(\frac{2}{3}\right)^{2} \cdot\left(x^{2}\right)^{2}=\frac{2^{2}}{3^{2}} \cdot x^{2 \cdot 2}=\frac{4}{9} x^{4}$
26) $\left(-\frac{2}{3} x^{2}\right)^{2}=\left(-\frac{2}{3}\right)^{2} \cdot\left(x^{2}\right)^{2}=+\frac{2^{2}}{3^{2}} \cdot x^{2 \cdot 2}=\frac{4}{9} x^{4}$
27) $\left(-\frac{2}{3} x^{2}\right)^{2}=\left(-1 \cdot \frac{2}{3} \cdot x^{2}\right)^{2}=(-1)^{2} \cdot\left(\frac{2}{3}\right)^{2} \cdot\left(x^{2}\right)^{2}=1 \cdot \frac{2^{2}}{3^{2}} \cdot x^{2 \cdot 2}=\frac{4}{9} x^{4}$
28) $\left(-\frac{2}{3} x^{2}\right)^{3}=-\left(\frac{2}{3} x^{2}\right)^{3}=-\left(\frac{2}{3}\right)^{3} \cdot\left(x^{2}\right)^{3}=-\frac{2^{3}}{3^{3}} \cdot x^{2 \cdot 3}=-\frac{8}{27} x^{6} \quad$ I način
29) $\left(-\frac{2}{3} x^{2}\right)^{3}=\left(-\frac{2}{3}\right)^{3} \cdot\left(x^{2}\right)^{3}=-\frac{2^{3}}{3^{3}} \cdot x^{2 \cdot 3}=-\frac{8}{27} x^{6} \quad$ II način
30) $\left(x^{m}\right)^{2}=x^{m \cdot 2}=x^{2 m}$
31) $\left(y^{n}\right)^{3}=y^{n \cdot 3}=y^{3 n}$
32) $\left(x^{m} y^{n}\right)^{4}=\left(x^{m}\right)^{4} \cdot\left(y^{n}\right)^{4}=x^{m \cdot 4} \cdot y^{n \cdot 4}=x^{4 m} y^{4 n}$
33) $\left(x^{m} y^{n}\right)^{m}=\left(x^{m}\right)^{m} \cdot\left(y^{n}\right)^{m}=x^{m \cdot m} \cdot y^{n \cdot m}=x^{m^{2}} y^{n \cdot m}$
34) $\left(a^{3 x} b^{2 y}\right)^{2}=\left(a^{3 x}\right)^{2} \cdot\left(b^{2 y}\right)^{2}=a^{3 x \cdot 2} \cdot b^{2 y \cdot 2}=a^{6 x} b^{4 y}$
35) $\left(a^{3 x} b^{2 y}\right)^{x}=\left(a^{3 x}\right)^{x} \cdot\left(b^{2 y}\right)^{x}=a^{3 x \cdot x} \cdot b^{2 y \cdot x}=a^{3 x^{2}} b^{2 x y}$
36) $\left(2^{x}\right)^{2}=2^{x \cdot 2}=2^{2 \cdot x}=\left(2^{2}\right)^{x}=4^{x}$
37) $\left(3^{x}\right)^{3}=3^{x \cdot 3}=3^{3 \cdot x}=\left(3^{3}\right)^{x}=27^{x}$
38) $\left(2^{x}\right)^{x}=2^{x \cdot x}=2^{x^{2}}$
39) $\left(2^{m} 3^{n}\right)^{2}=\left(2^{m}\right)^{2} \cdot\left(3^{n}\right)^{2}=2^{m \cdot 2} \cdot 3^{n \cdot 2}=2^{2 \cdot m} \cdot 3^{2 \cdot n}=\left(2^{2}\right)^{m} \cdot\left(3^{2}\right)^{n}=4^{m} \cdot 9^{n}=4^{m} 9^{n}$
5.
37) $\left(\left(x^{2}\right)^{3}\right)^{4}=x^{2 \cdot 3 \cdot 4}=x^{24}$ Prema pravilu: $\left(\left(a^{n}\right)^{m}\right)^{z}=a^{n \cdot m \cdot z}$
38) $\left(\left(y^{3}\right)^{4}\right)^{5}=y^{3 \cdot 4 \cdot 5}=y^{60}$
39) $\left(\left(x^{2}\right)^{x}\right)^{4}=x^{2 \cdot x \cdot 4}=x^{8 x}$
40) $\left(\left(y^{3}\right)^{x}\right)^{y}=y^{3 \cdot x \cdot y}=y^{3 x y}$
41) $\left(\left(x^{2}\right)^{6}\right)^{2} \cdot\left(x^{3}\right)^{5}=x^{2 \cdot 6 \cdot 2} \cdot x^{3 \cdot 5}=x^{24} \cdot x^{15}=x^{24+15}=x^{39}$
42) $\left(y^{3}\right)^{4} \cdot\left(\left(y^{5}\right)^{3}\right)^{2}=y^{3 \cdot 4} \cdot y^{5 \cdot 3 \cdot 2}=y^{12} \cdot y^{30}=y^{12+30}=y^{42}$
43) $\left(\left(x^{2}\right)^{5}\right)^{3}:\left(x^{4}\right)^{7}=x^{2 \cdot 5 \cdot 3}: x^{4 \cdot 7}=x^{30}: x^{28}=x^{30-28}=x^{2}$
44) $\left(\left(a^{3}\right)^{6}\right)^{8}:\left(\left(a^{2}\right)^{4}\right)^{5}=a^{3 \cdot 6 \cdot 8}: a^{2 \cdot 4 \cdot 5}=a^{144}: a^{40}=a^{144-40}=a^{104}$
45) $\left(\frac{2}{3} a^{2} b^{3}\right)^{3}:\left(2 a b^{2}\right)^{2}=\left(\frac{2}{3}\right)^{3} \cdot\left(a^{2}\right)^{3} \cdot\left(b^{3}\right)^{3}:\left[2^{2} \cdot a^{2} \cdot\left(b^{2}\right)^{2}\right]=$

$$
=\frac{2^{3}}{3^{3}} \cdot a^{2 \cdot 3} \cdot b^{3 \cdot 3}:\left(4 \cdot a^{2} \cdot b^{2 \cdot 2}\right)=
$$

$$
=\frac{8}{27} \cdot a^{6} \cdot b^{9}:\left(4 \cdot a^{2} \cdot b^{4}\right)=
$$

$$
=\frac{8}{27}: 4 \cdot a^{6}: a^{2} \cdot b^{9} \cdot b^{4}=
$$

$$
=\frac{2}{27} \cdot a^{6-2} \cdot b^{9-4}=
$$

$$
=\frac{2}{27} a^{4} b^{5}
$$

5. Koristimo pravila: $\quad(a b)^{n}=a^{n} b^{n} \quad(a b c)^{n}=a^{n} b^{n} c^{n} \quad\left(a^{n}\right)^{m}=a^{n \cdot m} \quad\left(\left(a^{n}\right)^{m}\right)^{z}=a^{n \cdot m \cdot z}$
46) $\left(\frac{1}{2} x^{2} y^{3}\right)^{3} \cdot\left(4 x^{3} y^{2}\right)^{3}=\left(\frac{1}{2}\right)^{3} \cdot\left(x^{2}\right)^{3} \cdot\left(y^{3}\right)^{3} \cdot\left[4^{3} \cdot\left(x^{3}\right)^{3} \cdot\left(y^{2}\right)^{3}\right]=$

$$
\begin{aligned}
& =\frac{1^{3}}{2^{3}} \cdot x^{2 \cdot 3} \cdot y^{3 \cdot 3} \cdot\left(64 \cdot x^{3 \cdot 3} \cdot y^{2 \cdot 3}\right)= \\
& =\frac{1}{8} \cdot x^{6} \cdot y^{9} \cdot\left(64 \cdot x^{9} \cdot y^{6}\right)= \\
& =\frac{1}{8} \cdot 64 \cdot x^{6} \cdot x^{9} \cdot y^{9} \cdot y^{6}= \\
& =\frac{64}{8} \cdot x^{6+9} \cdot y^{9+6}= \\
& =8 \cdot x^{15} \cdot y^{15}= \\
& =8 x^{15} y^{15}
\end{aligned}
$$

47) $\left(\frac{1}{2} x^{2} y^{3}\right)^{3}:\left(4 x^{3} y^{2}\right)^{3}=\left(\frac{1}{2}\right)^{3} \cdot\left(x^{2}\right)^{3} \cdot\left(y^{3}\right)^{3}:\left[4^{3} \cdot\left(x^{3}\right)^{3} \cdot\left(y^{2}\right)^{3}\right]=$

$$
=\frac{1^{3}}{2^{3}} \cdot x^{2 \cdot 3} \cdot y^{3 \cdot 3}:\left(64 \cdot x^{3 \cdot 3} \cdot y^{2 \cdot 3}\right)=
$$

$$
=\frac{1}{8} \cdot x^{6} \cdot y^{9}:\left(64 \cdot x^{9} \cdot y^{6}\right)=
$$

$$
=\frac{1}{8}: 64 \cdot x^{6}: x^{9} \cdot y^{9}: y^{6}=
$$

$$
=\frac{1}{8 \cdot 64} \cdot x^{6-9} \cdot y^{9-6}=
$$

$$
=\frac{1}{512} \cdot x^{-3} \cdot y^{3}=
$$

$$
=\frac{1}{512} \cdot \frac{1}{x^{3}} \cdot y^{3}=
$$

$$
=\frac{y^{3}}{512 x^{3}}
$$

48) $\left(3 a^{2} b\right)^{x} \cdot\left(a^{x} b^{3 x}\right)^{2}=3^{x} \cdot\left(a^{2}\right)^{x} \cdot b^{x} \cdot\left[\left(a^{x}\right)^{2} \cdot\left(b^{3 x}\right)^{2}\right]=$

$$
\begin{aligned}
& =3^{x} \cdot a^{2 \cdot x} \cdot b^{x} \cdot\left(a^{x \cdot 2} \cdot b^{3 x \cdot 2}\right)= \\
& =3^{x} \cdot a^{2 x} \cdot b^{x} \cdot\left(a^{2 x} \cdot b^{6 x}\right)= \\
& =3^{x} \cdot a^{2 x} \cdot a^{2 x} \cdot b^{x} \cdot b^{6 x}= \\
& =3^{x} \cdot a^{2 x+2 x} \cdot b^{x+6 x}= \\
& =3^{x} a^{4 x} b^{7 x}
\end{aligned}
$$

49) $\left(x^{3}\right)^{m+1}=x^{3 \cdot(m+1)}=x^{3 m+3}$
5. Koristimo pravila: $\quad(a b)^{n}=a^{n} b^{n} \quad(a b c)^{n}=a^{n} b^{n} c^{n} \quad\left(a^{n}\right)^{m}=a^{n \cdot m} \quad\left(\left(a^{n}\right)^{m}\right)^{z}=a^{n \cdot m \cdot z}$
49) $\left(x^{3}\right)^{m+1}=x^{3 \cdot(m+1)}=x^{3 m+3}$
50) $\left(x^{3}\right)^{2 m-1} \cdot\left(x^{2}\right)^{m-1}=x^{3 \cdot(2 m-1)} \cdot x^{2 \cdot(m-1)}=$

$$
\begin{aligned}
& =x^{6 m-3} \cdot x^{2 m-2}= \\
& =x^{6 m-3+2 m-2}= \\
& =x^{6 m+2 m-3-2}= \\
& =x^{8 m-5}
\end{aligned}
$$

51) $\left(x^{5}\right)^{2 m-1}:\left(x^{3}\right)^{m+1}=x^{3 \cdot(2 m-1)}: x^{2 \cdot(m-1)}=$

$$
\begin{aligned}
& =x^{6 m-3}: x^{2 m-2}= \\
& =x^{6 m-3-(2 m-2)}= \\
& =x^{6 m-3-2 m+2}= \\
& =x^{6 m-2 m-3+2}= \\
& =x^{4 m-1}
\end{aligned}
$$

52) $2\left(x^{2}\right)^{3}+3\left(x^{3}\right)^{2}=2 \cdot x^{2 \cdot 3}+3 \cdot x^{3 \cdot 2}=$

$$
\begin{aligned}
& =2 \cdot x^{6}+3 \cdot x^{6}= \\
& =(2+3) \cdot x^{6}= \\
& =5 x^{6}
\end{aligned}
$$

53) $\left(a^{3}\right)^{4}-3\left(a^{2}\right)^{6}+4\left(a^{4}\right)^{3}=a^{3 \cdot 4}-3 \cdot a^{2 \cdot 6}+4 \cdot a^{4 \cdot 3}=$

$$
\begin{aligned}
& =a^{12}-3 \cdot a^{12}+4 \cdot a^{12}= \\
& =(1-3+4) \cdot a^{12}= \\
& =2 \cdot a^{12}= \\
& =2 a^{12}
\end{aligned}
$$

6. Koristimo pravilo: $\quad a^{n} b^{n} c^{n}=(a b c)^{n}$
1) $2^{x} \cdot 5^{x}=(2 \cdot 5)^{x}=10^{x}$
2) $3^{x} \cdot 4^{x}=(3 \cdot 4)^{x}=12^{x}$
3) $4^{a} \cdot 6^{a}=(4 \cdot 6)^{a}=24^{a}$
4) $2^{y} \cdot 4^{y}=(2 \cdot 4)^{y}=8^{y}$
5) $\left(\frac{a c}{b}\right)^{2} \cdot\left(\frac{b}{c}\right)^{2}=\left(\frac{a \cdot c}{b} \cdot \frac{b}{c}\right)^{2}=a^{2}$
6) $\left(\frac{a}{b}\right)^{4} \cdot\left(\frac{b}{a}\right)^{4}=\left(\frac{a}{b} \cdot \frac{b}{a}\right)^{4}=1^{4}=1$
7) $\left(\frac{3}{4}\right)^{3} \cdot\left(\frac{8}{3}\right)^{3}=\left(\frac{3}{4} \cdot \frac{8}{3}\right)^{3}=\left(\frac{3}{4} \cdot \frac{4 \cdot 2}{3}\right)^{3}=2^{3}=8$
8) $\left(\frac{x y}{2}\right)^{2} \cdot\left(\frac{4}{x^{2} y}\right)^{2}=\left(\frac{x y}{2} \cdot \frac{4}{x^{2} y}\right)^{2}=\left(\frac{x \cdot y}{2} \cdot \frac{2 \cdot 2}{x \cdot x \cdot y}\right)^{2}=\left(\frac{2}{x}\right)^{2}=$ možemo ostaviti u ovom obliku

$$
\text { ili dalje: } \quad=\frac{2^{2}}{x^{2}}=\frac{4}{x^{2}}
$$

9) $\left(\frac{x y}{z}\right)^{3} \cdot\left(\frac{x}{y z}\right)^{3}=\left(\frac{x y}{z} \cdot \frac{x}{y z}\right)^{3}=$ nakon kraćenja $=\left(\frac{x \cdot x}{z \cdot z}\right)^{3}=\left(\frac{x^{2}}{z^{2}}\right)^{3}=\frac{\left(x^{2}\right)^{3}}{\left(z^{2}\right)^{3}}=\frac{x^{2 \cdot 3}}{z^{2 \cdot 3}}=\frac{x^{6}}{z^{6}}$
10) $\left(\frac{x y}{z}\right)^{m+1} \cdot\left(\frac{x}{y z}\right)^{m+1}=\left(\frac{x y}{z} \cdot \frac{x}{y z}\right)^{m+1}=$ nakon kraćenja $=$

$$
=\left(\frac{x \cdot x}{z \cdot z}\right)^{m+1}=\left(\frac{x^{2}}{z^{2}}\right)^{m+1}=\frac{\left(x^{2}\right)^{m+1}}{\left(z^{2}\right)^{m+1}}=\frac{x^{2 \cdot(m+1)}}{z^{2 \cdot(m+1)}}=\frac{x^{2 m+2}}{z^{2 m+2}}
$$

11) $\left(\frac{x^{2} y^{3}}{z^{4}}\right)^{2} \cdot\left(\frac{z^{6}}{x^{3} y^{2}}\right)^{2}=\left(\frac{x^{2} y^{3}}{z^{4}} \cdot \frac{z^{6}}{x^{3} y^{2}}\right)^{2}=\left(\frac{x^{2} \cdot y^{2} \cdot y^{1}}{z^{4}} \cdot \frac{z^{4} \cdot z^{2}}{x^{2} \cdot x^{1} \cdot y^{2}}\right)^{2}=$ nakon kraćenja $=$

$$
=\left(\frac{z^{2}}{x^{1}}\right)^{2}=\frac{\left(z^{2}\right)^{2}}{\left(x^{1}\right)^{2}}=\frac{z^{2 \cdot 2}}{x^{1 \cdot 2}}=\frac{z^{4}}{x^{2}}
$$

12) $\left(\frac{x^{2} y^{3}}{z^{4}}\right)^{m} \cdot\left(\frac{z^{6}}{x^{3} y^{2}}\right)^{m}=\left(\frac{x^{2} y^{3}}{z^{4}} \cdot \frac{z^{6}}{x^{3} y^{2}}\right)^{m}=\left(\frac{x^{2} \cdot y^{2} \cdot y^{1}}{z^{4}} \cdot \frac{z^{4} \cdot z^{2}}{x^{2} \cdot x^{1} \cdot y^{2}}\right)^{m}=$ nakon kraćenja $=$

$$
=\left(\frac{y^{1} \cdot z^{2}}{x^{1}}\right)^{m}=\frac{\left(y^{1}\right)^{m} \cdot\left(z^{2}\right)^{m}}{\left(x^{1}\right)^{m}}=\frac{y^{1 \cdot m} \cdot z^{2 \cdot m}}{x^{1 \cdot m}}=\frac{y^{m} z^{2 m}}{x^{m}}
$$

13) $\left(\frac{x-y}{x+1}\right)^{5} \cdot\left(\frac{x^{2}-1}{x^{2}+2 x y+y^{2}}\right)^{5} \cdot\left(\frac{x+y}{x-y}\right)^{5}=\left(\frac{x-y}{x+1} \cdot \frac{x^{2}-1^{2}}{x^{2}+2 x y+y^{2}} \cdot \frac{x+y}{x-y}\right)^{5}=$

$$
\begin{aligned}
& =\left(\frac{x-y}{x+1} \cdot \frac{(x-1) \cdot(x+1)}{(x+y)^{2}} \cdot \frac{x+y}{x-y}\right)^{5}= \\
& =\left(\frac{(x-y)}{(x+1)} \cdot \frac{(x-1) \cdot(x+1)}{(x+y) \cdot(x+y)} \cdot \frac{(x+y)}{(x-y)}\right)^{5}=\text { pa kratimo }= \\
& =\left(\frac{x-1}{x+y}\right)^{5}=\frac{(x-1)^{5}}{(x+y)^{5}}
\end{aligned}
$$

7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$

Izračunaj:

1) $\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}=\frac{4}{9} \quad$ primjenili smo pravilo: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
2) $\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{3^{2}}{2^{2}}=\frac{9}{4}$
uputa: 2) $\underbrace{\left.\text { po pravilu: }\left(\frac{a}{2}\right)^{n}\right)^{n}=\frac{a^{n}}{b^{n}}}_{\substack{\left(\frac{2}{3}\right)^{\text {po pravilu }} \\\left(\frac{a}{b}\right)^{-2}=\left(\frac{b}{a}\right)^{n}}}=\frac{3^{2}}{2^{2}}=\frac{9}{4}$
3) $\left(\frac{1}{2}\right)^{3}=\frac{1^{3}}{2^{3}}=\frac{1}{8} \quad$ primjenili smo pravilo: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
4) $\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81}$
primjenili smo pravilo: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
5) $\left(\frac{5}{7}\right)^{-1}=\left(\frac{7}{5}\right)^{1}=\frac{7}{5}$
primjenili smo pravilo: $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
6) $\left(1 \frac{2}{7}\right)^{-1}=\left(\frac{1 \cdot 7+2}{7}\right)^{-1}=\left(\frac{9}{7}\right)^{-1}=\frac{7}{9} \quad \rightarrow$ mješoviti broj treba prvo pretvoriti u razlomak...
7) $\left(\frac{4}{5}\right)^{-2}=\left(\frac{5}{4}\right)^{2}=\frac{5^{2}}{4^{2}}=\frac{25}{16}$
8) $\left(\frac{2}{3}\right)^{-3}=\left(\frac{3}{2}\right)^{3}=\frac{3^{3}}{2^{3}}=\frac{27}{8}$
9) $\left(2 \frac{1}{3}\right)^{-2}=\left(\frac{2 \cdot 3+1}{3}\right)^{-2}=\left(\frac{6+1}{3}\right)^{-2}=\left(\frac{7}{3}\right)^{-2}=\left(\frac{3}{7}\right)^{2}=\frac{3^{2}}{7^{2}}=\frac{9}{49}$
$\mathfrak{I} \rightarrow$ mješovitit broj treba prvo pretvoriti u razlomak...
10) $\left(1 \frac{2}{7}\right)^{-2}=\left(\frac{1 \cdot 7+2}{7}\right)^{-2}=\left(\frac{7+2}{7}\right)^{-2}=\left(\frac{9}{7}\right)^{-2}=\left(\frac{7}{9}\right)^{2}=\frac{7^{2}}{9^{2}}=\frac{49}{81}$
7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
mješoviti broj treba prvo pretvoriti u razlomak...
11) $\left(1 \frac{1}{2}\right)^{-3}=\left(\frac{1 \cdot 2+1}{2}\right)^{-3}=\left(\frac{2+1}{2}\right)^{-3}=\left(\frac{3}{2}\right)^{-3}=\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
12) $\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}=\frac{4^{2}}{3^{2}}=\frac{16}{9}$
13) $\left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}}$
14) I način koristimo pravilo:

$$
\begin{aligned}
& (-x)^{\text {na parni eksponent }}=x^{\text {parnu }} \\
& (-x)^{\text {na neparni eksponent }}=-x^{\text {neparnu }}
\end{aligned} \text { pa je: }
$$

14) $\left(-\frac{x}{y}\right)^{2}=\left(\frac{x}{y}\right)^{2}=\frac{x^{2}}{y^{2}} \quad$ jer je: $\left(-\frac{x}{y}\right)^{2}=\left(-\frac{x}{y}\right)^{\text {parru }}=\left(\frac{x}{y}\right)^{\text {parnu }}=\left(\frac{x}{y}\right)^{2}=\ldots$
15) $\left(-\frac{x}{y}\right)^{2}=\left(-1 \cdot \frac{x}{y}\right)^{2}=(-1)^{2} \cdot\left(\frac{x}{y}\right)^{2}=1 \cdot \frac{x^{2}}{y^{2}}=\frac{x^{2}}{y^{2}} \quad$ II način

II način $\left(-\frac{x}{y}\right)$ rastavili smo na: $\left(-1 \cdot \frac{x}{y}\right) \ldots$
15) $\left(-\frac{x}{y}\right)^{3}=-\left(\frac{x}{y}\right)^{3}=-\frac{x^{3}}{y^{3}}$

I način

15) $\left(-\frac{x}{y}\right)^{3}=\left(-1 \cdot \frac{x}{y}\right)^{3}=(-1)^{3} \cdot\left(\frac{x}{y}\right)^{3}=-1 \cdot \frac{x^{3}}{y^{3}}=-\frac{x^{3}}{y^{3}} \quad$ II način
16) I način koristimo pravilo:

$$
\begin{aligned}
& (-x)^{\text {na parni eksponent }}=x^{\text {parnu }} \\
& (-x)^{\text {na neparni eksponent }}=-x^{\text {neparnu }}
\end{aligned}
$$ pa je:

16) $\left(-\frac{x}{y}\right)^{4}=\left(\frac{x}{y}\right)^{4}=\frac{x^{4}}{y^{4}} \quad$ jer je: $(-x)^{\text {na parri eksponent }}=x^{\text {parnu }}$
17) II način: $\left(-\frac{x}{y}\right)^{4}=\left(-1 \cdot \frac{x}{y}\right)^{4}=(-1)^{4} \cdot\left(\frac{x}{y}\right)^{4}=1 \cdot \frac{x^{4}}{y^{4}}=\frac{x^{4}}{y^{4}}$
18) $\left(1 \frac{1}{2}\right)^{2}=\left(\frac{1 \cdot 2+1}{2}\right)^{2}=\left(\frac{2+1}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}=\frac{3^{2}}{2^{2}}$
7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
18) $\left(-2 \frac{2}{3}\right)^{2}=\left(-\frac{2 \cdot 3+2}{3}\right)^{2}==\left(-\frac{6+2}{3}\right)^{2}=\left(-\frac{8}{3}\right)^{2}=\left(\frac{8}{3}\right)^{2}=\frac{8^{2}}{3^{2}}=\frac{64}{9} \quad$ I način

II način:
18) $\left(-2 \frac{2}{3}\right)^{2}=\left(-\frac{2 \cdot 3+2}{3}\right)^{2}==\left(-\frac{6+2}{3}\right)^{2}=\left(-\frac{8}{3}\right)^{2}=\left(-1 \cdot \frac{8}{3}\right)^{2}=(-1)^{2} \cdot\left(\frac{8}{3}\right)^{2}=1 \cdot \frac{8^{2}}{3^{2}}=\frac{64}{9}$
19) $\left(-2 \frac{2}{3}\right)^{3}=\left(-\frac{2 \cdot 3+2}{3}\right)^{3}==\left(-\frac{6+2}{3}\right)^{3}=\left(-\frac{8}{3}\right)^{3}=-\left(\frac{8}{3}\right)^{3}=-\frac{8^{3}}{3^{3}}=-\frac{512}{27} \quad$ I način

II način:

19) $\left(-2 \frac{2}{3}\right)^{3}=\left(-\frac{2 \cdot 3+2}{3}\right)^{3}==\left(-\frac{6+2}{3}\right)^{3}=\left(-\frac{8}{3}\right)^{3}=\left(-1 \cdot \frac{8}{3}\right)^{3}=(-1)^{3} \cdot\left(\frac{8}{3}\right)^{3}=-1 \cdot \frac{8^{3}}{3^{3}}=-\frac{512}{27}$
20) $\left(3 \frac{4}{5}\right)^{2}=\left(\frac{3 \cdot 5+4}{5}\right)^{2}=\left(\frac{15+4}{5}\right)^{2}=\left(\frac{19}{5}\right)^{2}=\frac{19^{2}}{5^{2}}=\frac{361}{25}$
21) $\left(\frac{x^{2}}{y^{3}}\right)^{4}=\frac{\left(x^{2}\right)^{4}}{\left(y^{3}\right)^{4}}=\frac{x^{2 \cdot 4}}{y^{3 \cdot 4}}=\frac{x^{8}}{y^{12}}$
22) $\left(-\frac{x^{3}}{y^{4}}\right)^{3}=-\left(\frac{x^{3}}{y^{4}}\right)^{3}=-\frac{\left(x^{3}\right)^{3}}{\left(y^{4}\right)^{3}}=-\frac{x^{3 \cdot 3}}{y^{4 \cdot 3}}=-\frac{x^{9}}{y^{12}} \quad$ I način
23) $\left(-\frac{x^{3}}{y^{4}}\right)^{3}=\left(-1 \cdot \frac{x^{3}}{y^{4}}\right)^{3}=(-1)^{3} \cdot \frac{\left(x^{3}\right)^{3}}{\left(y^{4}\right)^{3}}=-1 \cdot \frac{x^{3 \cdot 3}}{y^{4 \cdot 3}}=-\frac{x^{9}}{y^{12}} \quad$ II način
24) $\left(-\frac{x^{3}}{y^{4}}\right)^{2}=\left(\frac{x^{3}}{y^{4}}\right)^{2}=\frac{\left(x^{3}\right)^{2}}{\left(y^{4}\right)^{2}}=\frac{x^{3 \cdot 2}}{y^{4 \cdot 2}}=\frac{x^{6}}{y^{8}} \quad$ I način
25) $\left(-\frac{x^{3}}{y^{4}}\right)^{2}=\left(-1 \cdot \frac{x^{3}}{y^{4}}\right)^{2}=(-1)^{2} \cdot \frac{\left(x^{3}\right)^{2}}{\left(y^{4}\right)^{2}}=1 \cdot \frac{x^{3 \cdot 2}}{y^{4 \cdot 2}}=\frac{x^{6}}{y^{8}} \quad$ II način
7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
24) $\left(\frac{x^{2} y^{3}}{z^{4}}\right)^{2}=\frac{\left(x^{2}\right)^{2} \cdot\left(y^{3}\right)^{2}}{\left(z^{4}\right)^{2}}=\frac{x^{2 \cdot 2} \cdot y^{3 \cdot 2}}{z^{4 \cdot 2}}=\frac{x^{4} y^{6}}{z^{8}}$
25) $\left(\frac{x^{2} y^{5}}{z^{6}}\right)^{-2}=\left(\frac{z^{6}}{x^{2} y^{5}}\right)^{2}=$ po pravilu: $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$

$$
\begin{aligned}
& =\frac{\left(z^{6}\right)^{2}}{\left(x^{2}\right)^{2} \cdot\left(y^{5}\right)^{2}}= \\
& =\frac{z^{6 \cdot 2}}{x^{2 \cdot 2} \cdot y^{5 \cdot 2}}= \\
& =\frac{z^{12}}{x^{4} y^{10}}
\end{aligned}
$$

26) $\left(\frac{2 x^{4}}{3 y^{2} z}\right)^{3}=\frac{2^{3} \cdot\left(x^{4}\right)^{3}}{3^{3} \cdot\left(y^{2}\right)^{3} \cdot z^{3}}=\frac{8 \cdot x^{4 \cdot 3}}{27 \cdot y^{2 \cdot 3} \cdot z^{3}}=\frac{8 x^{12}}{27 y^{6} z^{3}}$
27) $\left(\frac{x^{-2} y^{3}}{2^{-3} z^{-4}}\right)^{3}=\left(\frac{2^{3} y^{3} z^{4}}{x^{2}}\right)^{3}=$

Najkrače objašnjenje:

Sve što ima minus u eksponentu
"skaće" iz brojnika u nazivnik i obrnuto...

$$
=\left(\frac{8 y^{3} z^{4}}{x^{2}}\right)^{3}=
$$

$$
=\frac{8^{3} \cdot\left(y^{3}\right)^{3} \cdot\left(z^{4}\right)^{3}}{\left(x^{2}\right)^{3}}=
$$

$$
=\frac{512 \cdot y^{3 \cdot 3} \cdot z^{4 \cdot 3}}{x^{2 \cdot 3}}=\frac{512 y^{9} z^{12}}{x^{6}}
$$

Sada dodatna uputa: Razlomak $\frac{x^{-2} y^{3}}{2^{-3} z^{-4}}$
Ima u eksponentu "minus" pa se prvo rješavamo tih "minusa"
$\frac{x^{-2} y^{3}}{2^{-3} z^{-4}}=\frac{2^{3} y^{3} z^{4}}{x^{2}} \quad$ U brojniku je bio: x^{-2} i on je "skočio" u nazivnik i sada je: x^{2}
U nazivniku su bili: $2^{-3} i z^{-4}$ i oni su "skočili" u brojnik i sada su: $2^{3} i z^{4}$
7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
28) $\left(\frac{2 x^{4} y^{-2}}{5 z^{3}}\right)^{2}=\left(\frac{2 x^{4}}{5 y^{2} z^{3}}\right)^{2}=$

$$
=\frac{2^{2} \cdot\left(x^{4}\right)^{2}}{5^{2} \cdot\left(y^{2}\right)^{2} \cdot\left(z^{3}\right)^{2}}=\frac{4 \cdot x^{4 \cdot 2}}{25 \cdot y^{2 \cdot 2} \cdot z^{3 \cdot 2}}=\frac{4 x^{8}}{25 y^{4} z^{6}}
$$

29) $\left(\frac{2 x^{4} y^{-2}}{5 z^{3}}\right)^{-2}=\left(\frac{2 x^{4}}{5 y^{2} z^{3}}\right)^{-2}=$

$$
\begin{aligned}
& =\left(\frac{5 y^{2} z^{3}}{2 x^{4}}\right)^{2}= \\
& =\frac{5^{2} \cdot\left(y^{2}\right)^{2} \cdot\left(z^{3}\right)^{2}}{2^{2} \cdot\left(x^{4}\right)^{2}}= \\
& =\frac{25 \cdot y^{2 \cdot 2} \cdot z^{3 \cdot 2}}{4 \cdot x^{4 \cdot 2}}= \\
& =\frac{25 y^{4} z^{6}}{4 x^{8}}
\end{aligned}
$$

30) $\left(\frac{2 x^{4} y^{-2}}{5 z^{3}}\right)^{3}=\left(\frac{2 x^{4}}{5 y^{2} z^{3}}\right)^{3}=\frac{2^{3} \cdot\left(x^{4}\right)^{3}}{5^{3} \cdot\left(y^{2}\right)^{3} \cdot\left(z^{3}\right)^{3}}=\frac{8 \cdot x^{4 \cdot 3}}{125 \cdot y^{2 \cdot 3} \cdot z^{3 \cdot 3}}=\frac{8 x^{12}}{125 y^{6} z^{9}}$
31) $\left(\frac{x}{y}\right)^{-1}=\left(\frac{y}{x}\right)^{1}=\frac{y}{x}$
32) $\left(\frac{x}{y}\right)^{-2} \cdot\left(\frac{y}{x}\right)^{3}=\left(\frac{y}{x}\right)^{2} \cdot \frac{y^{3}}{x^{3}}=\frac{y^{2}}{x^{2}} \cdot \frac{y^{3}}{x^{3}}=\frac{y^{2}}{x^{2}} \cdot \frac{y^{2} \cdot y^{1}}{x^{2} \cdot x^{1}}=\frac{x^{1}}{y^{1}}=\frac{x}{y}$
33) $\left(\frac{2 x-3}{2 x+3}\right)^{-3}=\left(\frac{2 x+3}{2 x-3}\right)^{3}=\frac{(2 x+3)^{3}}{(2 x-3)^{3}}$
34) $\left(\frac{1}{x-y}\right)^{-2}=\left(\frac{x-y}{1}\right)^{2}=(x-y)^{2}$
35) $\left(\frac{a^{2} b^{5}}{c^{3}}\right)^{-3}=\left(\frac{c^{3}}{a^{2} b^{5}}\right)^{3}=\frac{\left(c^{3}\right)^{3}}{\left(a^{2}\right)^{3} \cdot\left(b^{5}\right)^{3}}=\frac{c^{3 \cdot 3}}{a^{2 \cdot 3} \cdot b^{5 \cdot 3}}=\frac{c^{9}}{a^{6} b^{15}}$
7. Koristimo pravila: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
36) $\left(\frac{a^{2}}{y^{3}}\right)^{3} \cdot\left(\frac{y}{a^{3}}\right)^{2}:\left(\frac{y^{2}}{a^{4}}\right)^{2}=\frac{\left(a^{2}\right)^{3}}{\left(y^{3}\right)^{3}} \cdot \frac{y^{2}}{\left(a^{3}\right)^{2}}: \frac{\left(y^{2}\right)^{2}}{\left(a^{4}\right)^{2}}=$

$$
=\frac{a^{2 \cdot 3}}{y^{3 \cdot 3}} \cdot \frac{y^{2}}{a^{3 \cdot 2}}: \frac{y^{2 \cdot 2}}{a^{4 \cdot 2}}=
$$

$$
=\frac{a^{6}}{y^{6}} \cdot \frac{y^{2}}{a^{6}} \cdot \frac{y^{4}}{a^{8}}=
$$

$$
=\frac{a^{6}}{y^{7} \cdot y^{2}} \cdot \frac{y^{2}}{a^{6}}: \frac{y^{4}}{a^{8}}=\quad \quad \text { kratimo }
$$

$$
=\frac{1}{y^{7}} \cdot \frac{y^{4}}{a^{8}}=
$$

$$
=\frac{1}{y^{7}} \cdot \frac{a^{8}}{y^{4}}=
$$

$$
=\frac{a^{8}}{y^{7} \cdot y^{4}}=\frac{a^{8}}{y^{7+4}}=\frac{a^{8}}{y^{11}}
$$

37) $\left(\frac{3}{2}\right)^{-2} \cdot 2^{-3}+2^{-2}=\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{2^{3}}+\frac{1}{2^{2}}=\frac{2^{2}}{3^{2}} \cdot \frac{1}{8}+\frac{1}{4}=\frac{4}{9} \cdot \frac{1}{4 \cdot 2}+\frac{1}{4}=$

$$
=\frac{1}{9 \cdot 2}+\frac{1}{4}=\frac{1}{18}+\frac{1}{4}=\frac{1 \cdot 2+1 \cdot 9}{36}=\frac{11}{36}
$$

38) $\frac{1}{8} \cdot\left(\frac{3}{4}\right)^{-2}=\frac{1}{8} \cdot\left(\frac{4}{3}\right)^{2}=\frac{1}{8} \cdot \frac{4^{2}}{3^{2}}=\frac{1}{8} \cdot \frac{16}{9}=\frac{1}{8} \cdot \frac{8 \cdot 2}{9}=\frac{2}{9}$
39) $\left(\frac{2}{3}\right)^{-1}+\left(\frac{1}{3}\right)^{-2}-\left(\frac{1}{2}\right)^{-3}=\left(\frac{3}{2}\right)^{1}+\left(\frac{3}{1}\right)^{2}-\left(\frac{2}{1}\right)^{3}=\frac{3}{2}+9-8=\frac{3}{2}+1=\frac{3}{2}+\frac{2}{2}=\frac{5}{2}$
40) $\left[\left(\frac{3}{4}\right)^{-2} \cdot \frac{2^{-2}}{3^{-3}}\right]^{-2} \cdot\left(\frac{3}{2}\right)^{-3}=\left[\left(\frac{4}{3}\right)^{2} \cdot \frac{3^{3}}{2^{2}}\right]^{-2} \cdot\left(\frac{2}{3}\right)^{3}=\left[\frac{4^{2}}{3^{2}} \cdot \frac{27}{4}\right]^{-2} \cdot \frac{2^{3}}{3^{3}}=$

$$
=\left(\frac{16}{9} \cdot \frac{9 \cdot 3}{4}\right)^{-2} \cdot \frac{8}{27}=(4 \cdot 3)^{-2} \cdot \frac{8}{27}=12^{-2} \cdot \frac{8}{27}=\frac{1}{12^{2}} \cdot \frac{8}{27}=\frac{1}{144} \cdot \frac{8}{27}=\frac{1}{486}
$$

8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
1) $2^{0}=1 \quad$ po pravilu: $a^{0}=1$
2) $x^{0}=1$
3) $\left(\frac{x^{2} y^{4}}{z}\right)^{0}=1 \quad\left\{\begin{array}{l}\text { bez obzira što je u zagradi ako je eksponent } \\ \text { te zagrade nula sve je jednako jedan! }\end{array}\right.$
4) ili taj isti zadatak dužim postupkom: $\left(\frac{x^{2} y^{4}}{z}\right)^{0}=\frac{\left(x^{2}\right)^{0} \cdot\left(y^{4}\right)^{0}}{z^{0}}=\frac{1 \cdot 1}{1}=\frac{1}{1}=1$
5) $x^{0}+y^{0}=1+1=2$
6) $3^{0}=1$
7) $(-3)^{0}=1$
po pravilu: $a^{0}=1$
8) $-3^{0}=-1 \quad$ zato što je: $-3^{0}=-1 \cdot 3^{0}=-1 \cdot 1=-1$
9) $-3 x^{0}=-3 \cdot 1=-3$
10) $(x+y)^{0}=1 \quad$ bez obzira što je u zagradi ako je to na nultu sve je jednako jedan !
11) $(2 x-7 y)^{0}=1 \quad\left\{\begin{array}{l}\text { bez obzira što je u zagradi ako je eksponent } \\ \text { te zagrade nula sve je jednako jedan! }\end{array}\right.$
12) $x^{0}-2 y^{0}+7 z^{0}=1-2 \cdot 1+7 \cdot 1=1-2+7=6$
13) $x^{0}-(2 y)^{0}+(7 z)^{0}=1-1+1=1$
14) $x^{0} \cdot x^{0}=1 \cdot 1=1$
15) $\left(x^{0}\right)^{2}=1^{2}=1$
8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
13) $x^{0} \cdot x^{0}=1 \cdot 1=1$
14) $\left(x^{0}\right)^{2}=1^{2}=1$
15) $\left(x^{m}\right)^{0}=1 \quad$ bez obzira što je u zagradi ako je to na nuultu sve je jednako jedan!
16) $(4 x)^{0}=1$
17) $5^{-1}=\frac{1}{5}$ po pravilu: $a^{-1}=\frac{1}{a}$
18) $x^{-1}=\frac{1}{x}$
19) $0,2^{-1}=\left(\frac{2}{10}\right)^{-1}=\left(\frac{1}{5}\right)^{-1}=\frac{5}{1}=5 \quad$ prvo decimalni broj pretvorimo u razlomak...
20) $(x-y)^{-1}=\frac{1}{(x-y)^{1}}=\frac{1}{x-y}$ po pravilu: $\quad a^{-n}=\frac{1}{a^{n}}$
21) $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$ po pravilu: $a^{-n}=\frac{1}{a^{n}}$
22) $x^{-3}=\frac{1}{x^{3}}$
23) $0,3^{-2}=\left(\frac{3}{10}\right)^{-2}=\left(\frac{10}{3}\right)^{2}=\frac{10^{2}}{3^{2}}=\frac{100}{9}$
24) $(2 x-5)^{-5}=\frac{1}{(2 x-5)^{5}}$
25) $4^{-1}=\frac{1}{4}$
8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
26) $\frac{1}{4^{-1}}=\frac{1}{\frac{1}{4}}=\frac{\frac{1}{1}}{\frac{1}{4}}=\frac{1 \cdot 4}{1 \cdot 1}=4 \quad$ ili na drugi način: $\quad \frac{1}{4^{-1}}=\frac{1 \cdot 4^{1}}{1}=4$
27) $\frac{1}{(-4)^{-1}}=\frac{1}{\frac{1}{-4}}=\frac{\frac{1}{1}}{-\frac{1}{4}}=-\frac{1 \cdot 4}{1 \cdot 1}=-4$ ili na drugi način: $\frac{1}{(-4)^{-1}}=\frac{1 \cdot(-4)^{1}}{1}=\frac{1 \cdot(-4)}{1}=-4$
28) $\left(\frac{2}{3}\right)^{-1}=\left(\frac{3}{2}\right)^{1}=\frac{3}{2} \quad$ prema pravilu: $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$

Isti taj zadatak po pravilu: $a^{-1}=\frac{1}{a}$ ispada: $\left(\frac{2}{3}\right)^{-1}=\frac{1}{\frac{2}{3}}=\frac{\frac{1}{2}}{\frac{2}{3}}=\frac{3 \cdot 1}{2 \cdot 1}=\frac{3}{2} \quad$ vidimo da je rezultat isti!
29) $\frac{2}{5^{-1}}=\frac{2 \cdot 5^{1}}{1}=2 \cdot 5=10 \quad$ ili kraće: $\quad \frac{2}{5^{-1}}=2 \cdot 5^{1}=2 \cdot 5=10$
30) $\frac{2}{(-5)^{-1}}=\frac{2 \cdot(-5)^{1}}{1}=2 \cdot(-5)=-10$
31) $\frac{3}{2^{-2}}=\frac{3 \cdot 2^{2}}{1}=3 \cdot 4=12$
32) $\frac{2 a}{b^{-4}}=\frac{2 a \cdot b^{4}}{1}=2 a b^{4}$
33) $3^{5 x-4} \cdot 3^{4 x-3} \cdot 3^{7-9 x}=3^{5 x-4+4 x-3+7-9 x}=3^{5 x+4 x-9 x-4-3+7}=3^{0}=1$
8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
34) $2^{2 x+1} \cdot 2^{3} \cdot 2^{2-3 x} \cdot 2^{x-6}=2^{2 x+1+3+2-3 x+x-6}=2^{2 x-3 x+x+1+3+2-6}=2^{0}=1$
35) $5^{2 x-3} \cdot 5^{2-2 x}=5^{2 x-3+2-2 x}=5^{2 x-2 x-3+2}=5^{-1}=\frac{1}{5}$
36) $(x+y)^{2 m-n} \cdot(x+y)^{n-2 m}=(x+y)^{2 m-n+n-2 m}=(x+y)^{2 m-2 m+n-n}=(x+y)^{0}=1$
37) $27^{0} \cdot x^{0} \cdot y^{0} \cdot 2^{1} \cdot\left(\frac{1}{3}\right)^{-1}=1 \cdot 1 \cdot 1 \cdot 2 \cdot\left(\frac{3}{1}\right)^{1}=1 \cdot 2 \cdot 3=6$
38) $y^{0} \cdot 2^{-1} \cdot\left(\frac{1}{2}\right)^{1} \cdot\left(\frac{1}{5}\right)^{-1} \cdot 2^{-3}=1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot\left(\frac{5}{1}\right)^{1} \cdot \frac{1}{2^{3}}=1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 5 \cdot \frac{1}{8}=\frac{5}{32}$
39) $\left(\frac{a^{2} b}{c^{3}}\right)^{m+n}:\left(\frac{a^{2} b}{c^{3}}\right)^{m+2 n} \cdot\left(\frac{a^{2} b}{c^{3}}\right)^{n}=\left(\frac{a^{2} b}{c^{3}}\right)^{m+n-(m+2 n)+n}=\left(\frac{a^{2} b}{c^{3}}\right)^{m+n-m-2 n+n}=\left(\frac{a^{2} b}{c^{3}}\right)^{0}=1$
40) $\left(\frac{2^{-3}-2^{-1}}{2^{-2}+2^{-4}}\right)^{-2}=\left(\frac{\frac{1}{2^{3}}-\frac{1}{2^{1}}}{\frac{1}{2^{2}}+\frac{1}{2^{4}}}\right)^{-2}=\left(\frac{\frac{1}{8}-\frac{1}{2}}{\frac{1}{4}+\frac{1}{16}}\right)^{-2}=\left(\frac{\frac{1-2 \cdot 4}{8}}{\frac{1 \cdot 4+1}{16}}\right)^{-2}=$

$$
\begin{aligned}
& =\left(\frac{\frac{1-8}{8}}{\frac{4+1}{16}}\right)^{-2}=\left(\frac{-\frac{7}{8}}{\frac{5}{16}}\right)^{-2}=\left(-\frac{7 \cdot 16}{8 \cdot 5}\right)^{-2}=\left(-\frac{7 \cdot 2}{5}\right)^{-2}= \\
& =\left(-\frac{14}{5}\right)^{-2}=\left(-\frac{5}{14}\right)^{2}=\left(-1 \cdot \frac{5}{14}\right)^{2}=(-1)^{2} \cdot \frac{5^{2}}{14^{2}}=1 \cdot \frac{25}{196}=\frac{25}{196}
\end{aligned}
$$

41) $\left(\frac{2^{-2} \cdot 3^{-1}}{2^{-1} \cdot 3^{-2}}\right)^{-2}=\left(\frac{\frac{1}{2^{2}} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3^{2}}}\right)^{-2}=\left(\frac{\frac{1}{4} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{9}}\right)^{-2}=\left(\frac{\frac{1}{12}}{\frac{1}{18}}\right)^{-2}=\left(\frac{18}{12}\right)^{-2}=$

$$
=\left(\frac{6 \cdot 3}{6 \cdot 2}\right)^{-2}=\left(\frac{3}{2}\right)^{-2}=\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}=\frac{4}{9}
$$

8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
42) $\left(\frac{2^{-2}-3^{-1}}{2^{-1}+3^{-2}}\right)^{-2}=\left(\frac{\frac{1}{2^{2}}-\frac{1}{3}}{\frac{1}{2}+\frac{1}{3^{2}}}\right)^{-2}=\left(\frac{\frac{1}{4}-\frac{1}{3}}{\frac{1}{2}+\frac{1}{9}}\right)^{-2}=\left(\frac{\frac{3-4}{4 \cdot 3}}{\frac{9+2}{2 \cdot 9}}\right)^{-2}=\left(\frac{-\frac{1}{12}}{\frac{11}{18}}\right)^{-2}=\left(-\frac{18 \cdot 1}{11 \cdot 12}\right)^{-2}=$

$$
=\left(-\frac{3 \cdot 6}{11 \cdot 2 \cdot 6}\right)^{-2}=\left(-\frac{3}{22}\right)^{-2}=\left(-\frac{22}{3}\right)^{2}=\left(-1 \cdot \frac{22}{3}\right)^{2}=(-1)^{2} \cdot \frac{22^{2}}{3^{2}}=1 \cdot \frac{484}{9}=\frac{484}{9}
$$

43) $3^{0} \cdot 2^{0}-3^{1}=1 \cdot 1-\frac{1}{3}=1-\frac{1}{3}=\frac{1 \cdot 3-1}{3}=\frac{3-1}{3}=\frac{2}{3}$
44) $3^{0}+2^{0}-3^{1}=1+1-\frac{1}{3}=2-\frac{1}{3}=\frac{2 \cdot 3-1}{3}=\frac{6-1}{3}=\frac{5}{3}$
45) $2^{0}+2^{1}-2^{-2}=1+2-\frac{1}{2^{2}}=3-\frac{1}{4}=\frac{3 \cdot 4-1}{4}=\frac{12-1}{4}=\frac{11}{4}$
46) $2^{-2}-2^{-3}=\frac{1}{2^{2}}-\frac{1}{2^{3}}=\frac{1}{4}-\frac{1}{8}=\frac{1 \cdot 2-1}{8}=\frac{2-1}{8}=\frac{1}{8}$
47) $2^{-3}-2^{-2}+2^{-1}=\frac{1}{2^{3}}-\frac{1}{2^{2}}+\frac{1}{2^{1}}=\frac{1}{8}-\frac{1}{4}+\frac{1}{2}=\frac{1-1 \cdot 2+1 \cdot 4}{8}=\frac{1-2+4}{8}=\frac{3}{8}$
48) $3^{-2}-2^{-3}=\frac{1}{3^{2}}-\frac{1}{2^{3}}=\frac{1}{9}-\frac{1}{8}=\frac{8-9}{9 \cdot 8}=\frac{-1}{72}=-\frac{1}{72}$
49) $\frac{2^{-2}}{3^{-3}}=\frac{\frac{1}{2^{2}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{4}}{\frac{1}{27}}=\frac{1 \cdot 27}{4 \cdot 1}=\frac{27}{4}$
ili isti zadatak na drugi način: $\frac{2^{-2}}{3^{-3}}=\frac{3^{3}}{2^{2}}=\frac{27}{4} \quad$ vidi u 7. zadatku 27), 28), 29)
50) $\frac{2^{3} \cdot 3^{-2}}{4^{2}}=\frac{8 \cdot \frac{1}{3^{2}}}{16}=\frac{\frac{8}{9}}{\frac{16}{1}}=\frac{8 \cdot 1}{9 \cdot 16}=\frac{1}{9 \cdot 2}=\frac{1}{18}$
ili isti zadatak na drugi način: $\frac{2^{3} \cdot 3^{-2}}{4^{2}}=\frac{2^{3}}{4^{2} \cdot 3^{2}}=\frac{8}{16 \cdot 9}=\frac{1}{2 \cdot 9}=\frac{1}{18}$
8. Koristimo pravila: $\quad a^{0}=1 \quad, \quad a^{1}=a \quad, \quad a^{-1}=\frac{1}{a} \quad, \quad a^{-n}=\frac{1}{a^{n}}$
51) $\frac{2^{2} \cdot 4^{-1}}{3^{2} \cdot 6^{-1}}=\frac{4 \cdot \frac{1}{4}}{9 \cdot \frac{1}{6}}=\frac{\frac{4}{4}}{\frac{9}{6}}=\frac{\frac{1}{3}}{\frac{3}{2}}=\frac{1 \cdot 2}{1 \cdot 3}=\frac{2}{3}$
ili isti zadatak na drugi način: $\frac{2^{2} \cdot 4^{-1}}{3^{2} \cdot 6^{-1}}=\frac{4 \cdot 6^{1}}{9 \cdot 4^{1}}=\frac{6}{9}=\frac{2}{3}$
52) $\frac{a^{-1}}{b^{-1}}=\frac{\frac{1}{a}}{\frac{1}{b}}=\frac{1 \cdot b}{a \cdot 1}=\frac{b}{a}$
ili isti zadatak na drugi način: $\frac{a^{-1}}{b^{-1}}=\frac{b}{a}$
53) $\frac{a^{-2}}{b^{-2}}=\frac{\frac{1}{a^{2}}}{\frac{1}{b^{2}}}=\frac{1 \cdot b^{2}}{a^{2} \cdot 1}=\frac{b^{2}}{a^{2}} \quad$ ili drugi način: $\frac{a^{-2}}{b^{-2}}=\frac{b^{2}}{a^{2}}$
54) $\frac{a^{-1} b}{c^{-1}}=\frac{b \cdot \frac{1}{a^{1}}}{\frac{1}{c^{1}}}=\frac{\frac{b}{a}}{\frac{1}{c}}=\frac{b \cdot c}{a \cdot 1}=\frac{b c}{a} \quad$ ili drugi način: $\frac{a^{-1} b}{c^{-1}}=\frac{b \cdot c^{1}}{a^{1}}=\frac{b c}{a}$
55) $\frac{a^{2} b^{-3}}{c^{-1} d^{2}}=\frac{a^{2} \cdot \frac{1}{b^{3}}}{\frac{1}{c^{1}} \cdot d^{2}}=\frac{\frac{a^{2}}{b^{3}}}{\frac{d^{2}}{c}}=\frac{a^{2} \cdot c}{b^{2} \cdot d^{2}}=\frac{a^{2} c}{b^{2} d^{2}}$
ili drugi način: $\frac{a^{2} b^{-3}}{c^{-1} d^{2}}=\frac{a^{2} \cdot c^{1}}{b^{3} \cdot d^{2}}=\frac{a^{2} c}{b^{3} d^{2}}$
56) $\frac{x^{-1} b c^{2}}{y^{-2} c^{3} d^{-1}}=\frac{\frac{1}{x^{1}} \cdot b \cdot c^{2}}{\frac{1}{y^{2}} \cdot c^{3} \cdot \frac{1}{d^{1}}}=\frac{\frac{b \cdot c^{2}}{x}}{\frac{c^{3}}{y^{2} d^{1}}}=\frac{b \cdot c^{2} \cdot y^{2} \cdot d}{x \cdot c^{3}}=\frac{b \cdot c^{2} \cdot y^{2} \cdot d}{x \cdot c^{2} \cdot c^{1}}=\frac{b d y^{2}}{c x}$ ili drugi način: $\frac{x^{-1} b c^{2}}{y^{-2} c^{3} d^{-1}}=\frac{b \cdot c^{2} \cdot y^{2} \cdot d^{1}}{c^{3} \cdot x^{1}}=\frac{b \cdot c^{2} \cdot y^{2} \cdot d}{c^{2} \cdot c^{1} \cdot x}=\frac{b d y^{2}}{c x}$
57) $\frac{x^{-1} b^{-2} c^{2}}{y^{2} c^{-3} d^{-1}}=\frac{\frac{1}{x^{1}} \cdot \frac{1}{b^{2}} \cdot c^{2}}{y^{2} \cdot \frac{1}{c^{3}} \cdot \frac{1}{d^{1}}}=\frac{\frac{c^{2}}{x \cdot b^{2}}}{\frac{y^{2}}{c^{3} \cdot d}}=\frac{c^{2} \cdot c^{3} \cdot d}{x \cdot b^{2} \cdot y^{2}}=\frac{c^{2+3} \cdot d}{b^{2} x y^{2}}=\frac{c^{5} d}{b^{2} x y^{2}}$ ili drugi način: $\frac{x^{-1} b^{-2} c^{2}}{y^{2} c^{-3} d^{-1}}=\frac{c^{3} \cdot d^{1} \cdot c^{2}}{x^{1} \cdot y^{2} \cdot b^{2}}=\frac{c^{3+2} \cdot d}{b^{2} x y^{2}}=\frac{c^{5} d}{b^{2} x y^{2}}$
9.
